The Desert Garden at The Huntington is a Sanctuary for Succulents and a Battleground Against Poaching

Golden Barrel cacti in the Desert Garden at The Huntington Library, Art Museum and Botanical Gardens (Erik Olsen)

Plant theft, especially of rare and exotic succulents, has become a significant concern for botanical gardens, nurseries, and natural landscapes worldwide. The growing popularity of these visually striking, low-maintenance plants among collectors and hobbyists has fueled a thriving black market, now worth billions of dollars globally.

From private collections to protected areas, thieves target rare, endangered, or difficult-to-cultivate species, undermining conservation efforts and threatening the survival of these plants in the wild. The scale of this problem is vast; between 2016 and 2020, the illegal global trade in protected plant species was valued at $9.3 billion, nearly five times higher than the value of the illicit animal trade, according to the 2022 World Wildlife Trade Report by the Convention on International Trade in Endangered Species (CITES).

The Huntington Library, Art Museum and Botanical Gardens in San Marino

The Huntington Library, Art Museum and Botanical Gardens in San Marino, California, is one of the institutions on the front lines of this battle against plant theft. The Desert Garden at The Huntington is a place of exquisite charm…if weather permits and the temperatures are below 90 degrees. Spanning over 10 acres, the garden is one of the oldest and largest collections of cacti and succulents in the world, with over 2,000 species on display. Established in 1919 by Henry E. Huntington, it showcases a diverse array of plants from arid regions around the world, including unique specimens from North and South America, Africa, and Madagascar.

CALIFORNIA CURATED ON ETSY

Purchase stunning art prints of iconic California scenes.
Check out our Etsy store.

The Desert Garden at The Huntington features a stunning variety of succulents from arid regions around the world, some of which are rarely seen outside their natural habitats. This expansive collection includes towering cacti, like the iconic saguaro and golden barrel, alongside unique agaves and aloe plants with their spiky rosettes. Smaller, intricate species like Echeveria and Crassula provide a contrast with their colorful, fleshy leaves, ranging from deep greens to vibrant reds. The garden’s layout showcases the amazingly diverse shapes, textures, and growth habits of these hardy plants, creating a landscape that highlights the beauty and adaptability of desert flora. It is a succulent lover’s paradise. Trust me, I’m one of them.

At the upper end of the desert garden, a greenhouse shelters around 3,000 vulnerable succulents that are highly sensitive to excessive water or freezing temperatures. Some of these plants are too small and delicate to compete with more robust species in the outdoor environment. Even larger specimens, like the impressive Astrophytum ornatum, remain fragile despite their size, requiring careful protection to thrive.

Unfortunately, the stunning array of succulent plants in the garden attracts not only those captivated by the diverse and resilient forms these hardy plants can take but also those who seek to add them to their private collections or profit in their illicit trade.

Succulent plants (Sedum rubrotinctum) at The Huntington Library, Art Museum and Botanical Gardens (Erik Olsen)

Succulent theft has become a growing concern both at The Huntington and across California and the world, fueled by the global demand for these visually striking and low-maintenance plants. Between 2016 and 2020, the illegal global trade in protected plant species was valued at $9.3 billion, approximately five times higher than the value of the illicit animal trade, according to the 2022 World Wildlife Trade Report by the Convention on International Trade in Endangered Species.

The report emphasizes that plant poaching is a growing concern that leads to the loss of species, with many threatened or becoming extinct in the wild. Botanic gardens, as repositories for rare and endangered plant species, are uniquely positioned to combat this problem through various means, including raising public awareness, research, and collaboration with law enforcement and other stakeholders.

In response to a series of plant thefts from the Desert Garden in 2021, The Huntington created signage that calls attention to the crime. Photo by Linnea Stephan. | © The Huntington Library, Art Museum, and Botanical Gardens.

The Huntington’s Desert Garden, with its rare and mature specimens, is particularly vulnerable to thieves who recognize the high market value of certain succulents. Theft at the garden has been an ongoing problem, with criminals targeting species that are rare, endangered, or difficult to cultivate. Such thefts not only undermine the conservation efforts of botanical gardens but also pose a threat to the survival of these plants in the wild.

“People don’t think of it as theft when they’re just taking a little piece here or there,” says John Trager, The Huntington’s Bernie and Miyako Storch Curator of the Desert Garden and Collections. “But it’s most annoying, of course, when they take an entire plant, dig it out of the ground. Sometimes those are not that easy to replace.”

Blue echeveria, Echeveria secunda. (Erik Olsen)

Trager reported that the garden recently suffered a significant theft involving a species of succulent called echeveria, a large genus of flowering plants from the Crassulaceae family, native to the semi-desert regions of Central America, Mexico, and northwestern South America. The Huntington had three documented specimens, each with known provenance, making them especially valuable for scientific research. Two of the three specimens were stolen.

“When the second one was taken, we’re left with a lone individual that can’t be self-pollinated and with no chance of being able to propagate that documented collection for perpetuity,” laments Trager.

Nationally, and particularly in California, succulent theft has reached alarming levels in recent years. California’s native dudleya plants have been especially targeted by poachers, who uproot them from coastal cliffs and wilderness areas to sell them on the black market, often overseas. In 2018, California law enforcement agencies seized over 3,500 succulent plants from poachers bound for Asia, where they can fetch high prices among collectors and gardening enthusiasts.

Aloe bussei in the Desert Garden at the The Huntington Library, Art Museum and Botanical Gardens (Erik Olsen)

The illegal succulent trade is now estimated to be worth millions of dollars annually, with plants like Dudleya farinosa (also known as bluff lettuce) selling for as much as $100 each or more, depending on their size and rarity, and poachers often harvest them by the truckload. The damage caused by the theft of these plants may seem modest compared to the illegal wildlife trade in animals, but the impact is devastating.

Wild succulent plants have a special cachet in Asia. “It’s like having a Fendi bag on Rodeo Drive,” a California game warden told a student journalist. “A dudleya farinosa from the wild bluffs of Mendocino, California, especially a five-headed one, is apparently a super cool thing to have.”

More than 65 species and subspecies of Dudleya can be found from Southern Oregon to the southern tip of Baja California, including the Channel Islands and Baja California Islands, the Sierra Nevada and Santa Monica Mountains, and parts of Arizona and Utah. Poaching operations often involve stripping entire landscapes, leaving behind ecological damage that can take decades to repair.

California wildlife officer Pat Freeling replants a Dudleya in Mendocino County, CA
(Travis VanZant/California Department of Fish and Wildlife via AP)

“When you start removing them from the ecosystem, the cascading effects are potentially really significant,” Jared Margulies, an assistant professor at the University of Alabama who studies the illicit succulent trade told Vox.

The environmental damage caused by succulent poaching has become so severe that, in September 2021, California enacted a law prohibiting the harvesting of dudleya from the wild without explicit permission from the landowner or a proper permit. Violating this law is considered a misdemeanor and can result in a prison sentence of up to six months and fines reaching as high as $500,000. But enforcement remains a challenge due to the remote locations where thefts often occur.

Desert Garden at The Huntington Library, Art Museum and Botanical Gardens (Erik Olsen)

To combat this growing threat, The Huntington has implemented a range of measures. The garden’s extensive security protocols include increased surveillance, patrolling guards, and staff vigilance around particularly vulnerable plants. But The Huntington has also taken a more innovative approach by launching a facility dedicated to propagating and selling plants recovered from theft sting operations. This facility operates in partnership with law enforcement and conservation agencies to recover stolen plants and reintroduce them to legal, sustainable markets. The recovered plants, after undergoing health checks and quarantine periods to prevent the spread of pests and diseases, are propagated in controlled environments to ensure their survival and genetic diversity.

Succulent plants available to buy at the annual Cactus and Succulent Show and Sale.
Photo by Sandy Masuo. | © The Huntington Library, Art Museum, and Botanical Gardens.

The Huntington’s unique program, known as International Succulent Introductions (ISI), is designed to encourage the conservation and cultivation of rare and unusual succulents from across the globe. Founded in 1958 at the UC Botanical Garden at Berkeley, the ISI was taken over by the Huntington in 1989, where it has been steadily expanding ever since. The ISI aims to reduce the demand for wild-collected plants by offering collectors, researchers, and enthusiasts an opportunity to acquire ethically propagated succulents.

“The purpose is to distribute new and interesting plants to collectors, institutions, researchers, et cetera, anyone who’s interested,” says Trager. “A lot of them are increasingly endangered, so there’s a conservation component, but we’re interested in both wild species and horticultural entities. So both of them are within our purview.”

The Covid pandemic led to a rise in interest in indoor gardening and houseplants, including succulents, as people spent more time at home and looked for ways to enhance their living spaces and alleviate stress. Succulents, known for their low-maintenance care and unique aesthetic appeal, became particularly popular. The existence of the ISI allowed many people to collect unusual varieties not available at their local nurseries.

“The ISI is fairly unique,” says Trager. “It’s the only plant introduction program of any botanic garden that exclusively focuses on succulent plants.”

Visitors walk through the Desert Garden at The Huntington Library, Art Museum and Botanical Gardens (Erik Olsen)

Each year, the ISI introduces a carefully curated selection of plants, including both new species and cultivated varieties, all grown at The Huntington’s facilities. They offer about 30 plants through mail order each year via an online catalog. The remaining plants are then sold to visitors at the annual Cactus and Succulent Show and Sale, which took place this June at the Huntington. This initiative not only provides access to rare specimens but also supports conservation efforts by raising awareness about the risks of poaching and habitat destruction. The proceeds from the sale of these plants are reinvested into further conservation work, research, and education, making ISI a vital component in the global effort to protect succulent diversity.

Trager points out that since the program moved to the Huntington, the garden has distributed over 1,480 species and cultivars, totaling approximately 74,000 plants. Given that many of these plants are endangered, the program functions as a kind of Noah’s Ark, protecting these rare species and helping to ensure their survival for the future.

By using recovered plants to promote sustainability and education, The Huntington sets a powerful example in the fight against illegal succulent trade. This effort highlights the vital role botanical gardens play in conserving plant diversity while celebrating the stunning beauty and intricate wonder of desert flora, inspiring visitors to cherish and protect these unique organisms.

Buy us a cup of coffee?

Lots of work goes into writing California Curated. We’d appreciate it!

Unraveling the Geology Behind Palos Verdes’ Ongoing Landslide Crisis

A neighborhood threatened by landslides at Portuguese Bend on Palos Verdes (Erik Olsen)

For decades, geologists and engineers have been aware that the Portuguese Bend region of Palos Verdes is prone to landslides. Early maps and aerial surveys from the 1930s show continuous movement from the upper hills towards the high cliffs and bluffs that reach the Pacific Ocean.

Over the years, with a few exceptions, the ground movement was relatively slow, averaging about a foot per year. However, after the intense rains of the past year or two, the land is now shifting much more rapidly—up to 9 to 12 inches per week—plunging neighborhoods and communities built on this unstable terrain into panic and disarray. This accelerated movement has caused irreparable damage to some homes and led California to declare a state of emergency.

Aerial survey from the 1930s showing landslide potential at Portuguese Bend in Palos Verdes (Ranch Palos Verdes city government)

People have been allowed to build homes at Portuguese Bend largely due to a combination of historical oversight, demand for coastal real estate, and limited understanding of the area’s geologic instability when development first began. In the 1950s and 1960s, when much of the residential development in the area took place, there was less awareness and fewer regulations regarding the risks of building on unstable ground. Additionally, the picturesque coastal views and desirable location made Portuguese Bend an attractive area for developers and homeowners. Despite known landslide risks, building permits were often issued because of insufficient geotechnical assessments, political and economic pressures, and a lack of stringent land-use policies at the time. Over the years, as the understanding of the area’s geologic hazards has grown, there have been more restrictions and efforts to mitigate risks, but many homes already exist on land prone to movement.

CALIFORNIA CURATED ON ETSY

Purchase stunning art prints of iconic California scenes.
Check out our Etsy store.

The situation is similar to building homes in fire-prone areas – well-known to Californians, of course – within the so-called Wildland-Urban Interface (WUI), where human development meets and mixes with natural landscapes, creating a high-risk zone for natural disasters.

Small landslide at Portuguese Bend in Palos Verdes (Erik Olsen)

Portuguese Bend is one of the most active landslide zones on the peninsula. Here, the earth moves continuously, almost imperceptibly at times, but the effects are undeniable. The land isn’t just sliding; it’s flowing—like a slow-moving river of rock and dirt—down a natural depression, a sort of bowl or gulch formed by the interplay of tectonic activity and erosion. This gradual yet relentless descent toward the sea is driven by a combination of factors: the underlying geology of ancient marine sediment layers, heavy rainfall, and the constant forces of gravity pulling on the steep slopes. As a result, roads buckle, homes crack, and entire sections of land shift over time.

The geological makeup of Palos Verdes is complex and varied. The most prominent rocks on the Palos Verdes Peninsula, and the most crucial in terms of slope stability, belong to the Miocene Monterey Formation, which we wrote about in a previous article. This formation, over 2,000 feet thick in some areas, has been divided into three distinct members based on their rock types: the Altamira Shale, the Valmonte Diatomite, and the Malaga Mudstone, arranged from oldest to youngest.

Portuguese Bend at Palos Verdes

The Altamira Shale primarily consists of thin-bedded sedimentary rocks formed from layers of clay, interspersed with numerous layers of tuff, or volcanic ash that has largely transformed into weak clays over time. Thick deposits of volcanic ash, laid down millions of years ago, have been compacted into a clay-like material known as bentonite. When bentonite comes into contact with water, it becomes extremely slippery, acting like a natural lubricant. This slippery nature has been a major factor in triggering landslides throughout the Rancho Palos Verdes area, where the land’s stability is continually undermined by these underlying geological conditions.

Another factor contributing to landslides is the region’s tectonic activity. Palos Verdes sits above several active faults, including the Palos Verdes Fault. The movement along these faults exerts stress on the rock formations, leading to fractures and cracks that weaken the slopes. These cracks often become pathways for water to seep into the ground, further destabilizing the already precarious terrain.

The road along the coast at Portuguese Point has been moving for decades, a slow but relentless reminder of the dynamic nature of California’s landscape. (Erik Olsen)

Water plays a crucial role in triggering landslides in this region. Heavy rains, especially those associated with El Niño events like the atmospheric rivers of the last few years, can lead to a rapid increase in groundwater levels. When water infiltrates the ground, it increases the pressure within the soil and rock, reducing the friction that holds everything together. In Palos Verdes, where irrigation, septic systems, and urban development are common, human activities can exacerbate this natural process by altering drainage patterns and increasing water saturation in vulnerable areas. This convergence of natural and human-made factors makes the slopes more prone to sliding, particularly during or after intense rainfall.

To combat this, construction teams have installed a series of dewatering wells and pumps to actively extract groundwater from deep within the hillside. By lowering the water table and reducing the amount of water that saturates the soil, these efforts help to decrease the pressure within the slope and mitigate the risk of further ground movement. This method of dewatering is a crucial element in stabilizing the land, as it helps prevent the soil from becoming too heavy and reduces the lubricating effect that water has on the bentonite clay layers.

Closed road at Portuguese Bend in Palos Verdes (Erik Olsen)

Coastal erosion is another critical factor. The rugged cliffs of Palos Verdes are constantly being eroded by the ocean’s waves, wind, and rain. Over time, wave action undercuts the base of the cliffs, removing the support for the upper layers and leaving them hanging precariously over the ocean. As the base erodes away, the upper cliffs become more susceptible to collapse. When combined with the weakened geology and increased groundwater levels, this coastal erosion sets the stage for dramatic landslides.

Portuguese Point cliffs are part of the constant coastal erosion process at Palos Verdes aerial photo (Erik Olsen)

Recent studies are shedding new light on why landslides in Palos Verdes continue to be a concern. Geologists are now using advanced technologies, such as ground-penetrating radar and satellite imagery, to better understand the underground conditions that contribute to landslides. A study from the University of California, Los Angeles, has explored how even minor shifts in groundwater levels, exacerbated by climate change and increasingly unpredictable weather patterns, can tip the balance and trigger significant slope failures. This research emphasizes that it’s not just the obvious heavy rainfall events that pose a threat; subtle changes in water content due to human irrigation, drought, or even slight variations in precipitation can also destabilize these slopes over time.

CALIFORNIA CURATED ON ETSY

Purchase stunning art prints of iconic California scenes.
Check out our Etsy store.

Moreover, new geological mapping and subsurface studies have provided a clearer picture of the fault lines and the fractured rock layers beneath Palos Verdes. These studies suggest that the interaction between multiple fault zones may be more significant than previously thought, potentially increasing the region’s susceptibility to movement. Understanding these interactions is crucial for predicting future landslides and developing mitigation strategies.

But in the end, nature will likely have the final say.

Portuguese Bend in Palos Verdes (Erik Olsen)

The picture that emerges from these studies is one of a region where natural geological processes and human activities are in a delicate balance. It’s an ongoing fight that really offers a precarious vision of the future for residents and others who use the area for recreation. The weak rock formations, intersecting fault lines, and relentless coastal erosion create an environment where the land is always moving and on the brink of collapse. Add to this the unpredictable impacts of climate change, which can bring more intense storms and alter precipitation patterns, and it becomes clear why Palos Verdes is so prone to landslides.

Efforts to mitigate the risk are ongoing. Local governments and geologists are working to develop more effective monitoring systems and better land-use planning guidelines to manage development in these sensitive areas. Understanding the complex geology and hydrology of Palos Verdes is critical to preventing future disasters and protecting the communities that call this beautiful but unstable coastline home.

Looking back at John McPhee’s Assembling California: A Journey through Geology and Time

Sierra Nevada Mountains and Hot Creek Geological Site (Erik Olsen)

California’s diverse landscapes, rich history, and abundant natural phenomena have inspired many scientific-themed popular books, ranging from John Steinbeck’s “The Log from the Sea of Cortez,” with its focus on marine biology, to Mary Austin’s “The Land of Little Rain,” a lyrical examination of California’s desert environment, not to mention the late Marc Reisner’s Cadillac Desert, an epic history of California’s contentious relationship with water. (I’ve read it twice.)

But when it comes to exploring the state’s geology – its mountains, coastlines, and, most notably, its fault lines – few books can match the prowess and eloquence of John McPhee’s “Assembling California“. Part of his Pulitzer-winning series, “Annals of the Former World,” the book offers a comprehensive and accessible tour through the geological history of California, crafting a fascinating narrative that is as engaging as it is informative.

John McPhee is an acclaimed American writer and pioneer of creative nonfiction, renowned for his deeply researched and beautifully crafted works that often explore topics related to nature, science, and geography. A long-time staff writer for The New Yorker and the author of over 30 books, McPhee is celebrated for his ability to turn seemingly ordinary subjects—such as geology, oranges, or transportation—into compelling narratives. His distinctive style blends meticulous research with accessible, often poetic prose that has been widely immitated. I’ve read several of McPhee’s books and while some of the work can be hard going, I’m usually very satisfied once I’m done. Assembling California is, in my opinion, one of his best.

Here’s an excerpt:

An old VW bus is best off climbing the Sierra from the west. Often likened to a raised trapdoor, the Sierra has a long and planar western slope and—near the state line—a plunging escarpment facing east. The shape of the Sierra is also like an airfoil, or a woodshed, with its long sloping back and its sheer front. The nineteenth-century geologist Clarence King compared it to “a sea-wave”—a crested ocean roller about to break upon Nevada. The image of the trapdoor best serves the tectonics. Hinged somewhere beneath the Great Valley, and sharply faulted on its eastern face, the range began to rise only a very short geologic time ago—perhaps three million years, or four million years—and it is still rising, still active, continually at play with the Richter scale and occasionally driven by great earthquakes (Owens Valley, 1872). In geologic ages just before the uplift, volcanic andesite flows spread themselves over the terrain like butterscotch syrup over ice cream. Successive andesite flows filled in local landscapes and hardened flat upon them. As the trapdoor rises—as this immense crustal block, the Sierra Nevada, tilts upward—the andesite flows tilt with it, and to see them now in the roadcuts of the interstate is to see the angle of the uplift.

John McPhee in Assembling California

The Sierra Nevada, a massive mountain range stretching like a spine nearly the length of California, provides the central geological narrative in “Assembling California”. Known for its stark beauty and dramatic peaks, the Sierras are also a textbook example of the immense forces that shape our planet. (We’ve written and will continue to write about them.) McPhee masterfully explicates how tectonic activity shaped this terrain over millions of years, giving readers a sense of the awe-inspiring age and dynamism of the Earth.

A brief bit about the man: Born in 1931, McPhee studied at Princeton University and Cambridge, and his writing straddles diverse topics from basketball to nuclear energy. His primary strength lies in his ability to seamlessly interweave complex scientific principles with engrossing human stories (there’s always an interesting character and the heart of his work), making the intricate world of science both comprehensible and enjoyable to the lay reader. His skill and prolificacy have earned him numerous accolades, including the Pulitzer Prize.

John McPhee (Wikipedia)

Assembling California stands out for its illuminating journey through California’s intricate geological history. Traveling with the late geologist Eldridge Moores of the University of California Davis, McPhee unpacks the layered story of California’s geology from its seismic activity to its unique rock formations. There is an excellent excerpt in a 1992 issue of the New Yorker.

Moores was a renowned geologist known for his significant contributions to understanding the geological history and structure of the Earth, particularly in relation to plate tectonics. Born in 1938 in Phoenix, Arizona, he spent the bulk of his career as a professor of geology at Davis, where his research significantly advanced the theory of plate tectonics. He was particularly interested in the geology of his adopted home state, California. Moores also held the position of President of the Geological Society of America in 1996. Apart from his boundless energy, Moores’ real gift was his vision: his ability to “see” geologic history in a pile of rocks.  His passionate teaching style and profound knowledge made him a beloved figure in the field of geology. Moores died in a tragic accident in 2018 while on a field trip in Greece, leaving a significant void in the geology world.

Eldridge Moores – UC Davis

Moores explains to McPhee how the Sierra Nevada range didn’t just emerge from the Earth’s crust, as geologists long thought. Instead, the building blocks bubbled up from faraway rifts in the ocean floor called “spreading centers,” then transported thousands of miles on moving plates and piled up onto the North American continent.

Sierra Nevada Mountains and Owens River (Erik Olsen)

The movement of the Earth’s crust along fault lines, as in the well-known San Andreas Fault, is a central theme of the book. By explaining the shifting of tectonic plates, McPhee brings to life the reality of living in California: a landscape that is constantly, if imperceptibly, in motion. His descriptions of earthquakes, both historic and potential future ones, vividly underscore the seismic hazards associated with residing in the state. McPhee’s ability to humanize these impersonal geologic processes is a testament to his storytelling prowess. You will learn a lot about what happens to the California beneath your feet.

San Andreas fault and the Carrizo Plain

However, “Assembling California” is not just a tale of geological forces. McPhee also weaves in fascinating narratives about gold prospectors and vineyard owners, infusing the state’s human history into its ancient geological story. You really can’t tell the story of modern California without delving into the resource-driven economic narratives that are a fundamental part of the state’s history. We try to do a lot of that in this magazine.

For those who want to go beyond McPhee, another fine author is Simon Winchester, whose “Crack at the End of the World” picks up where McPhee left off, both in terms of theme and approach. Winchester, a British author and journalist known for his popular science writing, explores the devastating 1906 San Francisco earthquake. Like McPhee, Winchester expertly merges detailed geological explanations with human stories, providing a compelling account of one of the most significant natural disasters in American history. This is also a very fine book.

San Francisco earthquake

The legacy of “Assembling California” lies not just in its rich storytelling but also in the path it blazed for a new kind of popular science writing – one that’s engaging, comprehensive, and profoundly human. By understanding our planet’s past and the forces that shape it, we are better prepared to navigate its future. As readers, we owe a debt of gratitude to writers like McPhee and Winchester who, through their craft, help us appreciate the intricate dance between the Earth’s geological processes and human civilization.

Since McPhee wrote “Assembling California,” technology has made leaps and bounds in the field of geology. Advancements in technology like LIDAR (Light Detection and Ranging), which uses lasers to measure distances and can create high-resolution maps of the Earth’s surface, and improvements in seismograph technology and satellite imaging, have allowed scientists to study geological phenomena in greater detail and with better accuracy.

Geology, like all scientific disciplines, evolves over time as new techniques and technologies become available. This progress often refines our understanding of geological phenomena and can lead to new theories and models. We’re still learning a lot about how our state literally came together, with new research being done all the time that sheds light on our mountains, coasts and valleys.

More recent studies of the San Andreas Fault, for instance, have allowed us to better understand the fault’s behavior, including how frequently significant earthquakes occur and what triggers them. For example a 2022 study from Lamont-Doherty Earth Observatory suggests that the San Andreas Fault moves slowly in a process called “creep,” which was previously thought to release tectonic stress and reduce earthquake risk. However, this new research suggests that this creeping segment might instead be accumulating stress, potentially leading to larger and more destructive earthquakes than previously anticipated.

Not exactly good news, but it’s always better to know what’s happening and to have science that backs it up, and McvPhee was a master at helping us understand he way the world works.

Buy us a cup of coffee?

Lots of work goes into writing California Curated. We’d appreciate it!

California’s Monterey Formation: Unraveling the Secrets of a Fossil-Rich, Oil-Bearing Geological Wonder

Monterey Formation rocks near Newport Beach (Erik Olsen)

California’s Monterey Formation is one of the most fascinating geological formations in the United States. Stretching along the California coast from San Francisco to Los Angeles, this formation is notable for its incredible diversity of siliceous rocks—rocks rich in silica, such as shale, chert, diatomite, and porcelanite. While these rocks are interesting to geologists, the Monterey Formation is also significant for its potential to explain the origins of petroleum deposits that have fueled California’s economy for over a century. NASA’s Jet Propulsion Laboratory once called it “California’s primary petroleum source rock.”

Fracture network of joints and cross-joints exposed on bedding surface of siliceous shale. Note linked, larger-aperture fracture in center with oxidation rim. Montaña de Oro State Park. (NASA JPL)

At the heart of the Monterey Formation’s geology is the unique composition of many different types of rock that come together in such a way that they create an ideal environment for trapping oil. The intricate layering of organic-rich shales, siliceous rocks, carbonates, and diatomites forms a complex network of porous and permeable spaces, allowing oil to migrate into these reservoirs. Over time, these rocks act like natural sponges, effectively capturing and holding large quantities of oil within their formations, making the Monterey Formation one of California’s most significant petroleum sources. It is estimated that over 38 billion barrels of oil have been produced to date from fields whose source rock is the Monterey.

CALIFORNIA CURATED ON ETSY

Purchase stunning art prints of iconic California scenes.
Check out our Etsy store.

Diatomite, a light, porous rock formed from the fossilized remains of diatoms, is a dominant feature. Diatoms, microscopic algae with silica-based cell walls, thrived in nutrient-rich waters, leading to the thick layers of sediments that later became diatomite. Chert, another key rock type in the formation, is formed from the recrystallization of biogenic silica, adding to the complexity of the geological record. Interspersed with these are organic-rich shales, which contain substantial amounts of organic material called kerogen. Over millions of years, kerogen undergoes a biological transformation becoming the oil and gas that now serve as the backbone of California’s petroleum industry (see our story on the history of the Long Beach oil industry).

Diatoms (Wikipedia)

The Monterey Formation displays a fascinating and unusual mixture of geological deposits, from deep ocean basins to shallow continental shelves. During the Miocene, upwelling currents along the California coast brought nutrient-rich waters to the surface, fostering high biological productivity and depositing vast amounts of biogenic silica, a form of silicon dioxide (SiO₂) that is produced by living organisms. Periods of fluctuating sea levels, driven by climate changes and tectonic shifts, further shaped the environment. During low sea levels, parts of the continental shelf were exposed, allowing for erosion from wind and sun. These would shift to periods of high sea levels, which allowed for denser, deep-water sedimentation. In some layers, the presence of evaporites—minerals that form from the evaporation of water—suggests extensive episodes of arid conditions, similar to what we are experiencing now with California’s recurring periods of drought.

Offshore oil platforms along California’s coast drill into the Monterey Formation, either tapping directly into its fractured shale or extracting oil that has migrated into more porous sandstone reservoirs. (Photo: Erik Olsen)

Much of the pioneering research on the geology, formation, and unique composition of the Monterey Formation was conducted by the late Robert Garrison, a distinguished professor of oceanography at the University of California, Santa Cruz. Garrison was considered the foremost expert on the Monterey Foundation, and his work was instrumental in revealing how the Monterey Formation’s diatomaceous and phosphatic deposits were shaped by a combination of oceanographic upwelling, climatic shifts, and tectonic activity during the Miocene epoch.

Petroleum geologists find the Monterey Formation especially intriguing because it serves as both a source and a reservoir for oil and gas, allowing them to better understand the processes of oil and gas generation, migration, and accumulation, as well as to develop more efficient extraction methods to maximize its economic potential. They are also quite beautiful. Walk along the beach near Crystal Cove in Orange County, for example, and examples of Monterey Formation rocks abound.

Monterey Formation rocks near Little Corona in Newport Beach (Erik Olsen)

Oil is formed from the remains of ancient marine organisms, such as plankton and algae, that were buried under layers of sediment and subjected to heat and pressure over millions of years, transforming them into hydrocarbons. Some of these hydrocarbons migrated into more permeable rocks, creating substantial oil fields that have been exploited for decades in Southern California. Certain layers of the Monterey Formation, particularly the fractured chert and dolomitic sections, also serve as excellent reservoirs due to their porosity and permeability, allowing them to store oil and gas for long periods of time.

Beyond its geological and economic importance, the Monterey Formation is a treasure trove for paleontologists. Its layers preserve a variety of marine fossils, including diatoms, radiolarians, foraminifera, and coccolithophores. These microfossils offer a detailed look at past ocean conditions, helping scientists reconstruct the climatic and oceanographic history of the Miocene epoch. Additionally, the formation contains fossils of larger marine vertebrates, such as whales, seals, and fish, providing further insight into the ecosystems of ancient oceans.

Microscope image of microfossils and organic matter in Monterey rocks. (Cal State Long Beach)

However, the Monterey Formation is not just a source of knowledge and resources; it also presents challenges, particularly in terms of potential environmental harm and geohazards like landslides. The soft, diatomaceous earth layers within the formation are prone to landslides, especially when water-saturated or fractured by tectonic action. This makes some coastal areas of California, where the Monterey Formation is exposed, particularly vulnerable to slope instability, posing risks for construction and development. Many recent news stories have documented the increasing rate at which the California coast is tumbling into the sea. An excellent recent book on the subject is Rosanna Xia’s California Against the Sea: Visions for Our Vanishing Coastline.

California’s geology is a remarkable mosaic that tells a story of immense geological diversity and dynamic processes. Among its many treasures, the Monterey Formation stands out as a geological marvel—its intricate layers, rich fossil beds, and significant economic potential continue to captivate scientists and researchers from around the world. This unique formation is more than just rock; it is a time capsule that preserves millions of years of Earth’s history, from ancient marine ecosystems to dramatic shifts in climate and tectonic activity. As geologists, paleontologists, and environmental scientists delve deeper into its mysteries, the Monterey Formation reveals invaluable clues about the past while shaping our understanding of California’s ever-evolving landscape. It serves as a profound reminder of the powerful forces that have sculpted one of the most geologically varied regions on the planet and continues to inspire exploration and discovery in the fields of Earth science.

Why bringing back California’s kelp is so important

Sea urchins have devastated kelp forests in California.

Two centuries ago, the waters off the California coast were home to a vibrant ecosystem of plants and animals. Vast forests of kelp provided habitat for thousands of species of fish and invertebrates. Some of these kelp forests were so dense that light hardly penetrated to the seafloor. But now, along much of the coastline, the kelp is all but gone.

The tragedy here goes far beyond species loss and a troubling decline in overall biodiversity in our coastal waters. Kelp are also great at taking up carbon dioxide from the atmosphere and they help reduce acidification of the oceans, essentially cleaning the water and bringing balance to the entire ecosystem.

Kelp off the coast of Anacapa Island in California’s Channel Islands (Photo: Erik Olsen)

But now, that balance is has been disrupted. A recent study says that California’s bull kelp (Nereocytis luetkeana) forests (one of several species that are endemic here) have declined by 93% in just the last five years.

It’s difficult to fathom the scale of this loss, and we are only beginning to understand what it will mean for the overall health of our coastal waters. When the kelp disappears, the entire complex web of organisms that rely on it for habitat and food is disturbed. That is to say, large swaths of the near-shore California coastal ecosystem depend upon kelp.

So, what is happening? Well, first a little history.

A healthy kelp forest in Channel Islands National Park (NPS)

Two centuries ago, when kelp forests along the coast were so abundant they stretched for hundreds of miles with thick canopies that could be seen at the surface. At the time, urchins existed, but their populations were held in check by sea otters, which have been known to eat 1/4 of their body weight in urchins in a day. But unrestrained hunting by trappers (often Russian and British) in the early 1800s and into the mid-century brought sea otter populations down so low, at one point they were considered extinct in the wild. With the otters gone, urchins flourished and along certain stretches of coast, the kelp disappeared. Remember, this was 200 years ago, long before California was even a state.

Otters have come back to certain stretches of the California coast, especially near Monterey, and in some cases, the kelp has come back. And, in fact, even now, some places around the state, things aren’t nearly so bad. One-third of southern California’s kelp forests are found within Channel Islands National Park and Channel Islands National Marine Sanctuary, where no-take marine reserves prohibit all take of living, geological, or cultural resources. In the reserve, California sheephead, spiny lobsters, and sunflower stars eat sea urchins and keep their population from exploding.

Bust most other regions are not so lucky. And things have gotten even worse. This is where it gets more complicated.

A diver measures kelp growth (Kate Vylet/California Sea Grant) 

An intense ocean warming period between 2014 and 2017 is the likely culprit in causing a mass die-off of starfish. Starfish prey on native purple urchins, keeping their numbers in check. With mass numbers of sea stars dead, the urchins proliferated, eating their way through the kelp forests. The result: disaster.

“What we’re seeing now are millions and millions of purple sea urchins, and they’re eating absolutely everything,” said Laura Rogers-Bennett, an environmental scientist with UC Davis Karen C. Drayer Wildlife Health Center and California Department of Fish and Wildlife operating out of the UC Davis Bodega Marine Laboratory. “They can eat through all the anemones, the sponge, all the kelp, the fleshy red algae. They’re even eating through calcified alga and sand.”

The loss of kelp forests in California should be immediately recognized as a major ecological problem to solve, and while some projects are underway to do just that, much more needs to be done.

Several organizations, most of them California-based, are trying to reduce the number of urchins in Southern California. For example, UC Davis researchers are working with Bay Area shellfish company Urchinomics to explore “ranching urchins, removing them from the seafloor and fattening them up to be sold as sushi. Urchins are highly valued by Japanese consumers and are even sold in some California sushi restaurants. One problem is that purple urchins tend to be too small to harvest for human consumption, hence the need to increase their size via aquaculture. But will this be enough to stop the urchin’s march towards environmental saturation? Probably not.

The Bay Foundation in Santa Monica launched a program to restore kelp beds around 150 acres of urchin barrens along the rocky reefs off Palos Verdes. Scientists, recreational divers, and fishermen go down and smash the urchins with small hammers. The effort has shown promise, with kelp growing back in 46 acres of restored reef. Again, this is not nearly enough.

Kelp forest off Palos Verdes Peninsula (Erik Olsen)

Other strategies are outlined in the Sonoma-Mendocino Bull Kelp Recovery Plan, released last June by the Greater Farallones Association and California Department of Fish and Wildlife. It includes measures such as creating a kelp oasis to preserve seed stock and repopulate bull kelp when conditions are conducive to restoration.

This may all be too little too late. We believe state, local and federal agencies should redouble their efforts now to mitigate the loss of kelp in California waters. The implications for further, perhaps total, loss of California’s once-flourishing kelp forests are just too dire and action is required now. As the authors of the report write “it may take decades before the complex biological communities, associates, and the ecosystem services provided by macroalgal [seaweed] forests rebound.”

The California Sea Lion’s Story of Survival and Conservation

California Sea Lion (Photo: Erik Olsen)

Basking under the sun, barking from buoys, and sometimes tormenting boat owners, the California sea lion (Zalophus californianus) is a familiar, playful marine mammal common up and down the coast. Known for their intelligence, dog-like demeanor, and underwater agility, they are a symbol of the Golden State’s rich coastal biodiversity. Despite occasional years of periodic starvation and decline, the California sea lion has made a remarkable recovery over the last two decades and is now one the most common marine mammals seen along the California coast. It’s hard to go out in one of California’s many harbors and not see at least one prowling about, often poking their heads above water to take a loud breath.

California sea lions are part of the family Otariidae, which includes all eared seals. These agile marine mammals are well adapted for life in the ocean, with streamlined bodies, strong flippers, and a layer of blubber to help regulate body temperature. Male sea lions are larger than females, weighing up to 800 pounds (363 kg) and measuring around 8 feet (2.4 meters) in length. Females are slightly smaller, weighing around 250 pounds (113 kg) and measuring about 6 feet (1.8 meters) long. Although many people refer to them as seals, they are a different species, and it is fairly easy to tell them apart. Unlike true seals, sea lions have visible ear flaps and long front flippers that enable them to “walk” on land.

NOAA

Ranging from the Gulf of California to British Columbia, these marine mammals are a frequent sight around harbors, beaches, and offshore islands. These highly social creatures also congregate in large colonies on rocky shores, such as the Channel Islands off the coast of Southern California. During breeding season, males establish territories and compete fiercely for females, often engaging in vocal displays and physical battles. The females give birth to a single pup each year and provide maternal care for several months until the pup is ready to venture into the water.

California sea lions are opportunistic feeders, primarily preying on fish species such as anchovies, herring, salmon, and squid. With their excellent underwater vision and agile swimming abilities, they can dive to great depths, sometimes reaching over 900 feet (275 meters) to search for their prey. They are capable of consuming significant amounts of food, with adult males consuming up to 5-8% of their body weight each day.

Sea lions on a buoy in Orange County. (Erik Olsen)

Despite their formidable size and agility, California sea lions face predation from their most notorious adversary, the white shark (Carcharodon carcharias). White sharks are highly efficient hunters and occasionally target sea lions, particularly the young as well as inexperienced individuals. While these encounters are relatively rare, they underscore the ongoing struggle for survival that sea lions face in their natural habitat. Because of the resurgence in the sea lion population on the West Coast, white shark populations have also rebounded significantly, with a recent study suggesting that there can be as many as 40 juvenile white sharks just 50 feet from shore at some of the most popular beaches in SoCal. While this rise in the white shark population off California has made many people concerned about the potential for attacks on humans, records show that just 15 people have died by shark attacks in California since the 1950s.

The California sea lion population has experienced both remarkable recoveries and challenging times. In the early 20th century, they faced severe exploitation for their fur, resulting in significant declines in their numbers. However, conservation efforts and legal protection brought about a remarkable turnaround for these marine mammals.

Under the Marine Mammal Protection Act and state regulations, California sea lions are strictly protected, prohibiting hunting and harassment. Additionally, the establishment of marine protected areas and efforts to reduce pollution and fishery interactions have contributed to their recovery. As a result, the population rebounded, with estimates suggesting that there are now around 300,000 individuals along the coast of California.

Sea lions in Newport Beach. Credit Erik Olsen

Despite their resurgence, California sea lions face ongoing challenges, particularly during certain years when large-scale die-offs occur due to starvation. These events are often linked to El Niño weather patterns, which disrupt the marine ecosystem and cause shifts in fish populations. During such periods, the availability of prey may be limited, leading to malnutrition and high mortality rates among sea lion pups.

While California sea lions have made a remarkable recovery, ongoing conservation efforts are crucial to ensuring their long-term survival. Monitoring their populations, protecting their habitats, and addressing climate change impacts are vital steps to safeguarding these charismatic marine mammals. By raising awareness and promoting responsible stewardship of our coastal ecosystems, we can ensure a bright future for the California sea lion and the diverse marine life it represents.

There’s something quietly remarkable about living alongside California sea lions. They slip through the surf with ease, haul out on docks and rocks, and bring a sense of life and motion to the coastline. Like puppies of the sea, they’re curious, playful, and deeply social. But they’re also resilient animals that have weathered challenges and bounced back. Not that threats still don’t exist. But their presence is a reminder of the ocean’s complexity and beauty, and of how lucky we are in California to share our shores with them.

Why Parkfield, California is the Nation’s Earthquake Capital

Parkfield, California

When Big Joe Turner sang “Shake, Rattle and Roll,” he probably wasn’t thinking about a dusty little town in Central California, but in Parkfield, it’s practically the town motto.

Parkfield, California, is a quiet, dusty farming town tucked into the rolling hills of the Cholame Valley, just off Highway 46 (worth the drive if you ever have the chance). A few miles down the road lies an historic intersection, the place where James Dean was killed in a near head on collision crash in his Porsche 550 Spyder on September 30, 1955. The collision ended a blazing young career just as it was taking off and cemented Dean’s image as a tragic icon of American cinema. While tourists still visit the nearby memorial, Parkfield itself is better known to scientists than to star-watchers.

Parkfield is an unremarkable town, with one exception: it lies directly atop the San Andreas Fault and is known as the Earthquake Capital of the World. This is not because there are so many earthquakes there, although there are, but because it has one of the highest densities of seismic technology anywhere. In addition to the larger magnitude 6.0 earthquakes that tend to strike about every 22 years, Parkfield also experiences a steady rhythm of smaller quakes. These minor tremors, often below magnitude 1.0, happen with such regularity, that scientists have compared them to “seismic pulsars” for their consistent, almost clock-like behavior. (And for what it’s worth, Petrolia, California actually has the most earthquakes).

Visit the California Curated store on Etsy for original prints showing the beauty and natural wonder of California.

The San Andreas Fault is one of the best known, and most active faults in the world. In the Parkfield area, the San Andreas Fault is constantly shifting—millimeter by millimeter, day by day. This continuous movement is unique to the region, as the fault remains relatively locked in both the northern section around San Francisco and the southern section near Palmdale. While the fault in these other areas stays immobile, the central part near Parkfield steadily creeps, creating a contrast that puts pressure on the locked sections to the north and south.

Parkfield’s main strip, stretching just a quarter mile, hosts a small collection of buildings, including a one-room elementary school, the USGS-Berkeley earthquake monitoring site, a Cal Fire station, and the Parkfield Cafe and Lodge. Outside the cafe, a row of mismatched mailboxes serves the dozen or so homes scattered along a few dirt roads branching off the main street. Parkfield might be a small, obscure town to most Californians, but to geologists fascinated by the workings of the Earth, it’s the epicenter of seismic research.

San Andreas Fault (Wikipedia)

Every hillside and valley, grassy nook and riverbed is home to some kind of instrument that measures earthquakes. Over the years, these instruments have become more sophisticated and expensive, making it necessary in many cases to fence them off with the threat of arrest.  These instruments monitor, hour by hour, or better, millisecond by millisecond, the stirrings of the earth. To geologists, it is ground zero for seismic measurement. 

The town is proud of its reputation. A water tower boasts the tourism slogan: BE HERE WHEN IT HAPPENS (see photo). There is also an iron bridge in the town that has the distinction of standing astride the San Andreas Fault. One one side of the creek that runs beneath the bridge is the North American tectonic plate. On the other is the Pacific tectonic plate. Those two plates are moving south and north respectively at a rate of about 2 inches a year. As we all know, that movement creates immense pressure as the two plates seem otherwise locked in place. That pressure will have to be released at some point. It always has. When that happens, we can expect a potentially devastating earthquake that will rock the state from top to bottom. 

Parkfield, CA (Photo: Wikipedia)

The writer Simon Winchester calls the fault an “ever-evolving giant that slumbers lightly under the earth’s surface and stirs, dangerously and often, according to its own whims and its own rules.” 

Since 1985, a focused earthquake prediction experiment has been in progress in Parkfield. Known as “The Parkfield Experiment“, the project’s stated purpose is to “better understand the physics of earthquakes — what actually happens on the fault and in the surrounding region before, during and after an earthquake.”

Since the mid-1980s, scientists have deployed an array of advanced monitoring devices, including seismometers, strainmeters, creepmeters, and GPS sensors, to capture detailed data on ground movement and strain accumulation. These instruments are designed to measure subtle changes in the Earth’s crust, helping researchers predict seismic events and understand the processes leading up to an earthquake. By continuously collecting data, the experiment has provided valuable insights into the mechanics of fault movement and the potential for earthquake prediction.

An art installation, known as the Parkfield Interventional EQ Fieldwork (PIEQF), used earthquake waves recorded by the USGS seismic network in California to trigger a hydraulic shake table which was installed in an excavated trench.  (USGS)

Experts also once bored a 10,000-foot-deep hole into the ground in Parkfield, into which they placed a large array of sensors to measure the earth’s movements. The goal of the $300 million project, called the San Andreas Fault Observatory at Depth, or SAFOD, was to allow scientists to study how faults work and how earthquakes happen. The drilling stopped in 2007, but Parkfield remains a hot spot for geologic research.

Additionally, the Berkeley Seismological Laboratory operates the High-Resolution Seismic Network (HRSN) in the Parkfield area. This network comprises geophone arrays aimed at monitoring microseismicity along the San Andreas Fault, providing valuable data on the fault’s behavior.

Parkfield remains critical to better understanding seismic dangers in California. The fault zone is poorly understood at depth and so far, the predictability of earthquakes in the near term is pretty limited. But devices like these could help improve prediction, especially if there is a large quake. But that’s the rub, really. We need to experience a large earthquake to get the best data to know how to predict later ones. So it is in California.