The Valley That Feeds a Nation

How tectonics, sediment, and water created one of the most productive landscapes on Earth.

Aerial view of Californiaโ€™s Central Valley, where Interstate 5 slices through a vast patchwork of irrigated fields, some of the most productive farmland on Earth, shaped by deep alluvial soils and Sierra Nevada snowmelt. (Photo: Erik Olsen)

I love Californiaโ€™s bizarre, complicated geology. For many years, I had a wonderful raised-relief map of the state on my wall made by Hubbard Scientific (it hangs on my sonโ€™s bedroom wall today). On the map, color and molded plastic contours reveal the stateโ€™s diverse and often startling geological formations. I loved staring at it, touching it, imagining how those landscapes came to be over geologic time.

There is so much going on here geologically compared to almost any other state that geologists often describe California as one of the best natural laboratories on Earth, a place so rich and varied that entire careers have been built trying to understand how all its pieces fit together. As the U.S. Geological Survey (USGS) puts it, nearly every major force that shapes the Earthโ€™s crust is visible here, from plate collision and volcanism to basin formation and mountain uplift. Some of my favorite writers, like John McPhee, have described California as a collage of geological fragments, assembled piece by piece over deep time, in a way that more closely resembles an entire continent than a single region.

But when we think about Californiaโ€™s geology, most of us probably imagine the Sierra Nevadaโ€™s towering granite peaks, the pent-up force of the San Andreas Fault, or the fact that Lassen Peak is still an active volcano. Those places grab our attention. Yet when it comes to a geological feature that has quietly shaped daily life in California more than almost any other, we should consider the Central Valley, arguably the stateโ€™s most important geological masterpiece.

Topographical and irrigation map of the Great Central Valley of California: embracing the Sacramento, San Joaquin, Tulare and Kern Valleys and the bordering foothills (Source: NYPL Digital Collection)

Sure, the valley is flat as a tabletop, stretching out for mile after mile as you drive Interstate 5 or Highway 99 (one of my favorites), but once you consider how it formed and what lies beneath the surface, the Central Valley reveals itself as a truly remarkable place on the planet, another superlative in our state, which, of course, is already full of them.

The Central Valley was formed when tectonic forces lowered a broad swath of Californiaโ€™s crust between the rising Sierra Nevada to the east and the Coast Ranges to the west, creating a long, subsiding basin that slowly filled with sediment eroded from those mountains over millions of years. For thousands of years, the southern end of the valley was dominated by Lake Tulare, a mega-freshwater lake that was once the largest freshwater lake west of the Mississippi. You might remember that just a few years ago, Lake Tulare briefly reappeared after a series of powerful atmospheric river storms. I went up there and flew my drone because I was working on a story about the construction of Californiaโ€™s long-troubled high-speed rail, which had halted construction because of the new old lake.

Lake Tulare reemerges in the southern San Joaquin Valley after powerful winter storms, flooding roads and farmland and briefly restoring the historic inland lake that once dominated this basin. (Photo: Erik Olsen)

On the other side in the west, the Coast Ranges rise up, hemming in the valley and basically holding it in place, forming something like a gigantic, hundreds-of-miles-long bathtub. One popular Instagrammer commented that it looks as if someone used a huge ice cream scoop to dig out the valley. As the surrounding mountains continued to rise, rain, snowmelt, and wind carried untold tons of silt and sediment downslope, steadily depositing them into this enormous basin over millions of years.

This process created what geologists call the Great Valley Sequence, a staggering accumulation of sedimentary material that, in some western portions of the basin, reaches a depth of 20,000 meters, or approximately 66,000 feet. Ten MILES.

Celebrate Californiaโ€™s wild side with our beautifully illustrated wildlife mugs, featuring the stateโ€™s most iconic birds and animals. Visit our store and bring a little piece of California nature to your morning coffee.

This long, slow process produced what geologists call the Great Valley Sequence, an immense stack of sedimentary rock built up over tens of millions of years as the basin steadily subsided and filled. In some western portions of the valley, that accumulated package reaches a depth of 20,000 meters in thickness, about 66,000 feet, or close to ten miles of layered geological history lying beneath the surface. Thatโ€™s kind of mind-blowing.

Endless rows of pistachio orchards stretch across the Central Valley at dusk, a geometric testament to the deep soils and engineered water systems that have turned this ancient basin into one of the worldโ€™s great agricultural landscapes. (Photo: Erik Olsen)

Itโ€™s not just โ€œdirtโ€; itโ€™s a ridiculously deep, nutrient-rich record of Californiaโ€™s geologic history. There are the remains of trillions of diatoms, or microscopic plankton, whose organic remains were crushed into oil shales that are home to significant petroleum deposits. During the late Pleistocene and into the Holocene, the southern end of the valley was dominated by Lake Tulare, mentioned above, a vast freshwater lake that in wet periods spread across 600 to 800 square miles, making it the largest freshwater lake west of the Mississippi. As the water evaporated and drained, the valley floor became exceptionally flat, similar to what we see today.

Most valleys are narrow corridors carved by a single river, but the Central Valley is a vast, enclosed catchment shaped by many rivers, trapping minerals and sediments from surrounding mountains rather than letting them wash quickly out to sea. This mix created near-ideal conditions for agriculture. For the uninitiated, the Central Valley is typically divided into two major sections: the northern third, known as the Sacramento Valley, and the southern two-thirds, known as the San Joaquin Valley. That lower region can be further broken down into the San Joaquin Basin to the north and the Tulare Basin to the south.

Relief map of California showing the Central Valley standing out as a wide, uninterrupted green swath between the rugged Sierra Nevada and the Coast Ranges, its flat, low-lying basin sharply contrasting with the surrounding mountains that frame and define it.

Today, because of all that fertility, the Central Valley is one of the worldโ€™s most productive agricultural regions, growing over 230 different crops. It produces roughly a quarter of the nationโ€™s food by value, supplies about 40 percent of U.S. fruits, nuts, and vegetables, and dominates global markets for crops like almonds, pistachios, strawberries, tomatoes, and table grapes. Truly a global breadbasket.

Of course, none of this would have been possible without water. The real turning point in Californiaโ€™s story was learning how to capture it, move it, and store it. From mountain snowpack to canals and reservoirs, controlling water has been the quiet engine behind much of the stateโ€™s success. When human engineering intervened in the 20th century through the Central Valley Project and the State Water Project, it essentially redirected a geological process that was already in place, replacing seasonal floods and ancient lakes with a controlled system of dams and canals.

Roadside cutout farmer holding bright green heads of lettuce at the edge of a Central Valley field, a playful nod to the regionโ€™s identity as one of the most productive agricultural landscapes in the world. (Photo: Erik Olsen)

Alas, this productivity is not without geological limits, and weโ€™ve done a pretty good job over-exploiting the valleyโ€™s resources, particularly groundwater, to achieve these things. The same porous sediments that store our life-giving groundwater are susceptible to compaction. In parts of the San Joaquin Valley, excessive pumping has caused the land to subside, sinking by as much as 28 feet in some locations, causing the soil to crack and the landscape to physically lower as the water is withdrawn. How we deal with that is a whole other story. Recent storms have helped Californiaโ€™s water supply tremendously, but the state seems destined to remain in a permanently precarious state of drought.

But when you talk geology, you talk deep time. You talk about eons and erosion, mountain ranges that rise and are slowly worn down, sometimes leaving behind something as breathtaking as the granite domes of Yosemite.Against that scale, the Central Valley can seem almost plain, but as I hope Iโ€™ve made the case here, when you look a little closer at even the most mundane things, you realize there is magnificence there, and few places on this planet are as magnificent as the state of California.

Ten Essential Books About Californiaโ€™s Nature, Science, and Sense of Place

You can scroll endlessly through TikTok and Instagram for quick bursts of Californiaโ€™s beauty, but to truly sink into a subject, and to savor the craft of a great writer, you need a book. Iโ€™m an avid reader, and over the past decade Iโ€™ve dedicated a large section of my bookshelf to books about California: its wild side, its nature, and its scientific wonders.

There are surely many other books that could be included in this top ten list, but these are the finest Iโ€™ve come across in the years since returning to live in the state.They capture the extraordinary diversity of Californiaโ€™s landscapes and wildlife, found nowhere else on Earth, and many also explore issues and themes that hold deep importance for the state and its people. Although Iโ€™ve read some of these titles digitally, I love having many of them in print, because there are few things more satisfying than settling into a beach, a forest campsite, or a favorite chair at home with a beautifully made book in hand.


California Against the Sea: Visions for Our Vanishing Coastline by Rosanna Xia

I first discovered Rosanna Xiaโ€™s work through her stunning exposรฉ on the thousands of DDT barrels found dumped on the seafloor near Catalina Island. It remains one of the most shocking, and yet not technically illegal, environmental scandals in Californiaโ€™s history.

Her recent book, California Against the Sea: Visions for Our Vanishing Coastline, is a beautifully written and deeply reported look at how Californiaโ€™s coastal communities are confronting the realities of climate change and rising seas. Xia travels the length of the state, from Imperial Beach to Pacifica, weaving together science, policy, and personal stories to show how erosion, flooding, and climate change are already reshaping lives. What makes the book stand out is its relative balance; itโ€™s not a screed, nor naรฏvely hopeful. It nicely captures the tension between human settlement — our love and need to be near the ocean — and the coastโ€™s natural (and unnatural, depending on how you look at it) cycles of change.

Xia is at her best when exploring adaptation and equity. She reminds us that even if emissions stopped today, the ocean will keep rising, and that not all communities have equal means to respond. The stories of engineers, Indigenous leaders, and ordinary residents highlight how resilience and adaptation must be rooted in local realities. I was especially drawn to Xiaโ€™s account of the California Coastal Commission, a wildly controversial agency that wields immense power over the future of the shoreline. Yet it was the commission and its early champions, such as Peter Douglas, who ensured that Californiaโ€™s coast remained open and accessible to all, a decision I consider one of the greatest legislative achievements in modern conservation history.

Thoughtful, accessible, and rooted in the coast we all care about, California Against the Sea challenges us to ask a pressing question: how can we live wisely, and with perspective, at the edge of a changing world?

The High Sierra: A Love Story by Kim Stanley Robinson

Kim Stanley Robinsonโ€™s The High Sierra: A Love Story is an expansive, heartfelt tribute to Californiaโ€™s most iconic mountain range. Because of the Sierraโ€™s vast internal basins, which are missing from many of the worldโ€™s other great mountain ranges, Robinson argues they are among the best mountains on Earth. His point is hard to refute. He makes a convincing case that the Sierra Nevada may be the greatest range in the world, formed from the planetโ€™s largest single block of exposed granite and lifted over millions of years into its dramatic present shape.

Blending memoir, geology (my favorite part of the book), and adventure writing, Robinson chronicles his own decades of exploration in the Sierra Nevada while tracing the forces — glacial, tectonic, and emotional, that shaped both the landscape and his own life.

Considered one of our greatest living science fiction writers (Iโ€™ve read Red Mars — long, but superb — and am currently reading The Ministry for the Future — the opening chapter is gripping and terrifying), Robinson might seem an unlikely guide to the granite heights of California. Yet reading The High Sierra: A Love Story reveals how naturally his fascination with imagined worlds extends into this very real one. The drama of the range, with its light, vastness, and sculpted peaks and basins, feels like raw material for his other universes.

The Dreamt Land by Mark Arax

The Dreamt Land is a portrait of Californiaโ€™s Central Valley, where the control of water has defined everything from landscape to power (power in the form of hydroelectric energy and human control over who gets to shape and profit from the valleyโ€™s vast resources). Blending investigative journalism, history, and memoir, Arax explores how the stateโ€™s rivers, dams, and aqueducts turned desert into farmland and how that transformation came at immense ecological and social cost.

Iโ€™ve read several Arax books, but this one is my favorite. Heโ€™s one of the finest writers California has produced. He writes with passion and clarity, grounding his ideas in decades of firsthand experience with Californiaโ€™s land and water. His focus on the fertile Central Valley, where he grew up as a reporter and farmerโ€™s son, gives the book both intimacy and authority, revealing how decisions about water shape not just the landscape but the people who depend on it. There are heroes and villains, plenty of the latter, and all of them unmistakably real. Yet Araxโ€™s prose is so fluid and eloquent that youโ€™ll keep reading not only for the story, but for the sheer pleasure of his writing.

Assembling California by John McPhee (1993)

If youโ€™re at all fascinated by Californiaโ€™s wild geology — and it truly is wild, just ask any geologist — this classic from one of the finest nonfiction writers alive is a must-read. McPhee takes readers on a geological road-trip through California, from the uplifted peaks of the Sierra Nevada to the fault-riven terrain of the San Andreas zone. He teams up with UC Davis geologist Eldridge Moores to explain how oceanic plates, island arcs, and continental blocks collided over millions of years to โ€œassembleโ€ the landmass we now call California. His prose is classic McPhee: clean, vivid, perhaps sometimes overly technical, as he turns terms like โ€œophioliteโ€ and โ€œbatholithโ€ into aspects of a landscape you can picture and feel.

What makes the book especially rewarding, especially for someone interested in earth systems, mapping, and the deep time, is how McPhee seamlessly links everyday places with deep-time events. Youโ€™ll read about gold-rush mining camps and vineyard soils, but all of it is rooted in tectonics, uplift, erosion, and transformation. Iโ€™ve gotten some of my favorite stories here on California Curated from the pages of this book. It can be ponderous at times, but youโ€™ll not regret giving it a try.

The California Lands Trilogy by Obi Kaufman

The Forests of California (2020)

The Coasts of California (2022)

The Deserts of California (2023)

Obi Kaufmanโ€™s California Lands Trilogy is one of the most visually stunning and ambitious projects in California natural history publishing. Beginning with The Forests of California, the first of three volumes that reimagine the state not through its highways or cities but through its living systems, Kaufman invites readers to see California as a vast and interconnected organism, a place defined by its natural rhythms rather than human boundaries. Each book is filled with delicate watercolor maps and diagrams by the author himself. The result is part art book and part ecological manifesto, a celebration of the interconnectedness of Californiaโ€™s natural world. Kaufmanโ€™s talents as an artist are breathtaking. If he ever offered his original watercolors for sale, Iโ€™d be among the first in line to buy them. Taken together, the series forms a panoramic vision of the stateโ€™s natural environments.

That said, Kaufmanโ€™s books can be dense, filled with data, maps, and cross-references that reward slow reading more than quick browsing. If Iโ€™m honest, I tend to dip in and out of them, picking them up when Iโ€™m bored or need a break from the latest political bombshell. Every page offers something to linger over, whether itโ€™s a river system painted like a circulatory map or a meditation on the idea of rewilding. For anyone fascinated by Californiaโ€™s natural systems, all Kaufmanโ€™s Field Atlases are invaluable companions endlessly worth revisiting.

The Enduring Wild: A Journey Into Californiaโ€™s Public Lands by Josh Jackson

My first job out of college was with the Department of the Interior in Washington, D.C., by far by the nation’s largest land management agency. A big part of that work involved traveling to sites managed by Interior across the country. I came to understand just how vast Americaโ€™s public lands are and how much of that expanse, measured in millions of acres, is under the care of the Bureau of Land Management (BLM).

Josh Jackson takes readers on a road trip across Californiaโ€™s often overlooked public wilderness, focusing on the lands managed by the BLM, an agency once jokingly referred to as the Bureau of Livestock and Mining. He shows how these so-called โ€œleftover landsโ€ hold stories of geology, Indigenous presence, extraction, and conservation.

His prose and photography (he has a wonderful eye for landscapes) together invite the reader to slow down, look closely at the subtleties of desert mesas, sagebrush plains, and coastal bluffs, and reckon with what it means to protect places many people have never heard of. His use of the environmental psychology concept of โ€œplace attachmentโ€ struck a chord with me. The theory suggests that people form deep emotional and psychological bonds with natural places, connections that shape identity, memory, and a sense of belonging. As a frequent visitor to the Eastern Sierra, especially around Mammoth Lakes and Mono Lake, I was particularly drawn to Jacksonโ€™s chapter on that region. His account of the lingering impacts of the Mining Act of 1872, and how its provisions still allow for questionable practices today, driven by high gold prices, was eye-opening. I came away with new insights, which is always something I value in a book.

I should mention that I got my copy of the book directly from Josh, who lives not far from me in Southern California. We spent a few hours at a cafe in Highland Park talking about the value and beauty of public lands, and as I sat there flipping through the book, I couldnโ€™t help but acknowledge how striking it is. Part of that comes from Heyday Booksโ€™ exceptional attention to design and production. Heyday also publishes Obi Kaufmanโ€™s work and they remain one of Californiaโ€™s great independent publishers. But much my appreciation for the book also comes from from Jackson himself, whose photographs are simply outstanding.

Get California wildlife gifts at our Etsy store. It helps support us!

What makes this book especially compelling is its blend of adventure and stewardship. Jackson doesnโ€™t simply celebrate wildness; he also lays out the human and institutional connections that shape (and threaten) these public lands, from grazing rights to mining to climate-change impacts. Some readers may find the breadth of landscapes and stories a little ambitious for a first book, yet the richness of the journey and the accessibility of the writing make it a strong addition for anyone interested in Californiaโ€™s endless conflict over land use: what should be used for extraction and what should be preserved? While I donโ€™t fully agree with Jackson on the extent to which certain lands should be preserved, I still found the book a wonderful exploration of that question.

The Backyard Bird Chronicles by Amy Tan

Amy Tanโ€™s The Backyard Bird Chronicles is a charming and unexpectedly personal journal of bird-watching, set in the yard of Tanโ€™s Bay Area home. Tan is an excellent writer, as one would expect from a wildly successful novelist (The Joy Luck Club, among others). But she also brings a curiosity and wonder to the simple act of looking across oneโ€™s backyard. I loved it. Who among us in California doesnโ€™t marvel at the sheer diversity of birds we see every day? And who hasnโ€™t wondered about the secret lives they lead? A skilled illustrator as well as a writer, she studies the birds she observes by sketching them, using art as a way to closely connect with the natural world around her.

What begins as a peaceful retreat during the Covid catastrophe becomes an immersive odyssey of observation and drawing. Tan captures the comings and goings of more than sixty bird species, sketches their lively antics, as she reflects on how these small winged neighbors helped calm her inner world when the larger world felt unsteady.

My only quibble is that I was hoping for more scientific depth; the book is more of a meditation than a field study. Still, for anyone who loves birds, sketching, or the quiet beauty of everyday nature, it feels like a gentle invitation to slow down and truly look.

โ€œTrees in Paradiseโ€ by Jared Farmer

California is the most botanically diverse state in the U.S. (by a long shot), home to more than 6,500 native plant species, about a third of which exist nowhere else on Earth. Jared Farmerโ€™s Trees in Paradise: A California History follows four key tree species in California: the redwood, eucalyptus, orange, and palm. Through these examples, Farmer reveals how Californians have reshaped the stateโ€™s landscape and its identity. Itโ€™s rich in scientific and historical detail. I have discovered several story ideas in the book for California Curated and learned a great deal about the four trees that we still see everywhere in the California landscape.

In telling the story of these four trees (remember, both the eucalyptus and the palm were largely brought here from other places), Farmer avoids easy sentimentality or harsh judgment, instead exploring how the creation of a โ€œparadiseโ€ in California came with ecological costs and profoundly shaped the stateโ€™s identity. While the book concentrates on those four tree categories, its detailed research and insight make it a compelling read for anyone interested in the stateโ€™s environment, history, and the ways people shape and are shaped by land.

One Wilshire: Los Angelesโ€™ Hidden Artery of the Internet

One Wilshire in downtown Los Angeles.

I often discover these stories not from full articles, books, or podcasts, but from a single paragraph, or even a sentence, in them that makes me pause and think, I want to know more. Thatโ€™s exactly how this weekโ€™s story about One Wilshire in downtown Los Angeles began. I was listening to a wonderful podcast called Stepchange, which mentioned One Wilshire in passing during a larger discussion about data centers (it was excellent, I swear). That brief moment sent me down a rabbit hole, uncovering a remarkable chapter in the history of the internet, one that unfolded not in Silicon Valley, like youโ€™d think, but right here in Los Angeles.

When you consider the modern internet, you might think of Silicon Valley campuses, data centers along the Columbia River in Oregon, or snaky undersea cables crossing the Pacific. You probably donโ€™t envision a 1960s office building in downtown Los Angeles. Yet, the seemingly nondescript tower known as One Wilshire is, in fact, one of the most critical pieces of digital real estate on Earth. What does that mean? It is the main connection point for the entire Pacific Rim, acting as a core gateway where great rivers of trans-Pacific data first enter or leave the United States.

If this single facility were to fail, vast swaths of California and potentially parts of the rest of the world could lose the ability to connect to the internet. At the very least it would likely cause major disruption, particularly in California and along Pacific-Asia routes.

Modern data center racks of servers and cables. (Wikipedia)

Built in 1966 by Skidmore Owings and Merrill, One Wilshire was originally an average, blocky corporate address at Wilshire Boulevard and Grand Avenue. It housed law firms and accounting practices. Three decades later, it had transformed into the Internetโ€™s western nerve center.ย 

The shift began quietly in the late 1980s. Before โ€œdata centerโ€ was even a thing, telephone companies and early network providers needed places to house switching equipment and to interconnect their lines. One Wilshire was perfect: its roof offered line-of-sight to Mount Lee, home to microwave and radio relays, and it sat beside Pacific Bellโ€™s main switching hub for Los Angeles, now the AT&T Madison Complex. By the early 1990s, the building had become known as the West Coastโ€™s โ€œcarrier hotel,โ€ a neutral site where dozens, and eventually hundreds, of companies physically linked their networks. Like a massive bundle of neurons. The heart of all the action was the fourth floor in the Meet-Me Room, a tangle of cables, routers, and blinking lights where data from around the world converged. The building is now also known as CoreSite LA1.

Downtown Los Angeles (Photo: Erik Olsen)

The Wired team that toured the site in 2008 described it as โ€œthe worldโ€™s most densely populated Meet-Me Roomโ€, home to more than 260 ISPs. The ceiling was so packed with cable trays that wiring spilled from every intersection. Copper wires entering the building were quickly converted to fiber-optic strands for long-haul transmission. And the data they can carry? Oof, thatโ€™s a story in and of itself.

The process that takes place, known as peering, lets networks connect and share traffic, again, like a neuron. Without it, users could only reach sites hosted by their own ISP. Before One Wilshire (and similar interconnection hubs) existed, internet service providers (ISPs) were like isolated islands. Users could connect only to sites hosted on their own network (also, remember AOL?). One Wilshire changed that by allowing networks to physically link to each other, creating the backbone of the modern internet. Telecom titans like AT&T, Verizon, China Telecom, Amazon, Google, and Netflix exchange data packets in unimaginable quantities. I tried to find an estimate of the total throughput capacity of One Wilshire and the best answer I could find was hundreds of terabytes per second which, while vague, is still a lot.

One Wilshire in downtown Los Angeles (Photo:

At its peak, One Wilshire carried an estimated one-third of all Internet traffic between North America and Asia. Undersea fiber-optic cables land in places like Hermosa Beach and the Manchester/Point Arena station. From there, terrestrial backhaul lines carry the data inland directly into One Wilshire, where it may be exchanged or forwarded onto international routes like Tokyo, Singapore, Hong Kong, Sydney, etc. All in the matter of milliseconds. Itโ€™s amazing.

By the dot-com boom, One Wilshire was less interesting as a basic real estate play and far more valuable for its network density, which was still growing. A single rack of servers or cross-connect could rent for tens of thousands of dollars a month. As its power draw and cooling needs surged, engineers retrofitted entire floors with industrial-grade infrastructure to keep pace with the growth of the internet. Of course, investors took notice. In 2013, GI Partners purchased the building for $437 million, a record $660 per square foot, then the highest price ever paid for any office property in downtown Los Angeles. By then it wasnโ€™t really an office building at all, but a data fortress housing the infrastructure of hundreds of companies connected by thousands of miles of fiber.

Another story to tell at some point is the incredible advance in how much data a single strand of fiber can carry. A technology called dense wavelength division multiplexing (DWDM), allows each fiber to carry dozens of individual light โ€œchannels,โ€ each at its own wavelength, dramatically increasing the capacity of a single fiber. Those fibers are bundled a larger cable (usually 12 pairs) that can carry 400โ€“600 terabytes per second. Weโ€™re talking 60โ€“90 million Netflix movies per second. Mind-blowing technology.

Today, One Wilshire remains a 664,000-square-foot communications hub, the core exchange center for trans-Pacific data and inter-carrier routing. Itโ€™s the West Coastโ€™s counterpart to New Yorkโ€™s 60 Hudson Street, also a nondescript, but vital physical part of the Internet.

So, yeah, the internet, and all the information you doom scroll and the Netflix videos you binge, are not only in reality โ€œa series of tubes,โ€ as Senator Stevens once put it. Itโ€™s physical. Itโ€™s real infrastructure, built of concrete, cables, and air-conditioned rooms full of servers. And one of the most important pieces of it all sits on a busy, traffic-clogged street in downtown Los Angeles.

California Is a Nobel Powerhouse

You can keep your Oscars, Emmys, Grammys, and Tonys. Take your Pulitzers, Bookers, and Peabodys, too. Even the Pritzker and the Fields Medal donโ€™t quite measure up. For me, nothing competes with the Nobel Prize as a symbol that someone has truly changed the world.

Iโ€™m not a scientist, but my mind lives in that space. Science, more than anything else, runs the world and reshapes it. This newsletter was born out of my fascination with how things work and the quiet mechanics behind the visible world and my love for all that California has to offer in the way of innovation and natural beauty. I love standing in front of something familiar and asking: why? how? what exactly is going on here? And nothing satisfies that intense curiosity more than science.

That said, Iโ€™ve never loved the word science. It feels cold and sometimes intimidating, as if it applies to people in lab coats and not to everyone else. I kinda wish there were a better word for that spirit of discovery that lives in all of us. Maybe itโ€™s wonder. Maybe curiosity. I dunno. “Science” turns people off sometimes, unfortunately.

Whatever you call it, the Nobel Prize represents the highest acknowledgment of that pursuit. It is the worldโ€™s way of saying: this mattered. This changed something. And there are few places (if any) on Earth that can rival California when it comes to the number of people who have earned that honor.

This year, 2025, was no different. Three of the Nobel Prizes announced this week carried California fingerprints, adding to a tradition that stretches back more than a century.

The Nobel Prize in Physiology or Medicine came first. It went to Mary Brunkow, Shimon Sakaguchi, and Fred Ramsdell, the last of whom studied at UCLA and UC San Diego. (In epic California fashion, Ramsdell, who studied at UCLA and UC San Diego, didnโ€™t even learn heโ€™d become a Nobel laureate until after returning from a trip deep into the Wyoming wilderness, where heโ€™d been out of contact with the outside world. Whatโ€™s more Californian than that?) Their research on regulatory T cells explained how the immune system knows when to attack and when to stand down. Ramsdellโ€™s discovery of a key gene that controls these cells has transformed how scientists think about autoimmune disease and organ transplantation.

Next came the Nobel Prize in Physics, awarded to John Clarke of UC Berkeley, Michel H. Devoret of UC Santa Barbara and Yale, and John M. Martinis of UC Santa Barbara (big shout out to UCSB!). Their award honored pioneering work that revealed how the strange laws of quantum mechanics can be seen in circuits large enough to hold in your hand. Beginning in Clarkeโ€™s Berkeley lab in the 1980s, the trio built superconducting loops that behaved like subatomic particles, โ€œtunnelingโ€ and flipping between quantum energy states. Those experiments helped create the foundation for todayโ€™s quantum computers.

The Chemistry Prize followed a day later, shared by Susumu Kitagawa, Richard Robson, and Omar M. Yaghi of UC Berkeley for discoveries in metalโ€“organic frameworks, or MOFs. These are crystalline materials so porous that a single gram can hold an entire roomful of gas (mind blown). MOFs are now used to capture carbon dioxide, filter water, and even pull drinking water from desert air. Yaghiโ€™s Berkeley lab coined the term โ€œreticular chemistryโ€ to describe this new molecular architecture. His work has become one of Californiaโ€™s most important contributions to the climate sciences.

California Institute of Technology (Photo: Erik Olsen)

Those three announcements in as many days lit up Californiaโ€™s scientific community, has garnered many headlines and carried on a tradition that has made the state one of the worldโ€™s most reliable engines of Nobel-level discovery.

The University of California system now counts 74 Nobel Prizes among its faculty and researchers. 23 in physics and 16 in chemistry. Berkeley leads the list, with 26 laureates, followed by UC San Diego, UCLA, UC Santa Barbara, and UC San Francisco. Even smaller campuses, such as UC Riverside, have ties to winners like Barry Barish, who shared the 2017 Nobel in Physics for detecting gravitational waves.

Linus Pauling with an inset of his Nobel Prize in 1955 (Wikipedia – public domain)

Caltech, which I have written about extensively and is quite close to my own home, counts 47 Nobel laureates (faculty, alumni, or postdocs). Its history is the stuff of legend. In 1923, Robert Millikan won for measuring the charge of the electron. In 1954, Linus Pauling received the Chemistry Prize for explaining the nature of the chemical bond. He later won the Peace Prize for his anti-nuclear activism, making him the only person to win two unshared Nobels.

Stanford University sits not far behind, with 36 Nobel winners in its history and about 20 currently active in its community. From the development of transistors and lasers to modern work in medicine and economics, Stanfordโ€™s laureates have changed the modern world in ways that is impossible to quantify, but profound in their impact.

These numbers tell a clear story: since the mid-twentieth century, about one in every four Nobel Prizes in the sciences awarded to Americans has gone to researchers based at California institutions, an extraordinary concentration of curiosity, intellect, and ambition within a single state.

University of California Santa Barbara (Photo: Erik Olsen)

Californiaโ€™s Nobel dominance began early. In the 1930s, UC Berkeleyโ€™s Ernest Lawrence invented the cyclotron, a device that would transform physics and eventually medicine. Caltech, meanwhile, became a magnet for the worldโ€™s brightest physicists and chemists.

Over the decades, Californiaโ€™s universities turned their focus to molecular biology, biochemistry, and genetics. In the 1980s, the stateโ€™s physicists and engineers drove advances in lasers, semiconductors, and now, quantum circuits. And as biotechnology rose, San Diego and the Bay Area became ground zero for breakthroughs in medicine and life sciences. One of the great moments in genetics took place in Asilomar on the coast. 

Nobel Museum in Stockholm, Sweden (Photo: Erik Olsen)

This is all about more than geography and climate (although those are a big sell, for sure). Californiaโ€™s research institutions kick ass because they operate as ecosystems rather than islands. Berkeley physicists collaborate with engineers at Stanford. Caltech chemists trade ideas with biotech firms in San Diego. Graduate students drift between labs, startups, and national research centers like Lawrence Livermore and JPL. The boundaries between university and industry blur, with campuses like Stanford turning breakthrough discoveries into thriving commercial ventures (look how many of our big tech brains came out of Stanford). In California, research doesnโ€™t end in the lab, it often turns into companies, technologies, and treatments that generate both knowledge and enormous economic value. Just look at AI today. 

Check out our Etsy store for cool California wildlife swag.

I think the secret is cultural. Over the years, Iโ€™ve lived on the East coast for almost two decades, and abroad for several as well, and nothing compares to the California vibe. California has never been afraid of big risks. Its scientists are encouraged to chase questions that might take decades to answer (see our recent story on just this idea). Thereโ€™s an openness to uncertainty here that works well in the natural sciences, but can also be found in Hollywood, Silicon Valley and, of course, space exploration. 

When next yearโ€™s round of early morning calls comes from Stockholm, it is a good bet that someone in California will pick up. Maybe a physicist in Pasadena, a chemist in Berkeley, or a physician in La Jolla. Maybe theyโ€™ll pick up the phone in bed, maybe a text from a spouse while camping, or on a morning jog. Thatโ€™s when a Swedish-accented voice tells them that the world has just caught up to what theyโ€™ve been quietly building for years.

The Unsung California Labs That Powered the Digital Revolution

Researchers at Lawrence Livermore National Laboratory working with the Big Aperture Thulium (BAT) laser system, part of the laser and plasma research that laid the groundwork for generating the extreme ultraviolet light at the heart of todayโ€™s most advanced chipmaking machines. (Photo: Jason Laurea/LLNL)

When I started this Website, my hope was to share Californiaโ€™s astonishing range of landscapes, laboratories, and ideas. This state is overflowing with scientific discovery and natural marvels, and I want readers to understand, and enjoy, how unusually fertile this state is for discovery. If youโ€™re not curious about the world, then this Website is definitely not for you. If you are, then I hope you get something out of it when you step outside and look around. 

I spend a lot of time in the California mountains and at sea, and I am endlessly amazed by the natural world at our doorstep. I am also fascinated by Californiaโ€™s industrial past, the way mining, oil, and agriculture built its wealth, and how it later became a cradle for the technologies and industries now driving human society forward. Of course, some people see technologies like gene editing and AI as existential risks. Iโ€™m an optimist. I see tools that, while potentially dangerous, used wisely, expand what is possible.

An aerial view of Lawrence Livermore National Laboratory in 1960, when the Cold War spurred rapid expansion of Americaโ€™s nuclear and scientific research campus east of San Francisco Bay. (Photo: LLNL Public Domain)

Todayโ€™s story turns toward technology, and one breakthrough in particular that has reshaped the modern world. It is not just in the phone in your pocket, but in the computers that train artificial intelligence, in advanced manufacturing, and in the systems that keep the entire digital economy running. The technology is extreme ultraviolet lithography (EUV). And one of the most important points I want to leave you with is that the origins of EUV are not found in Silicon Valley startups or corporate boardrooms but in Californiaโ€™s national laboratories, where government-funded science made the impossible possible.

This article is not a political argument, though it comes at a time when government funding is often questioned or dismissed. My purpose is to underscore how much Californiaโ€™s national labs have accomplished and to affirm their value.

This story begins in the late 1980s and 1990s, when it became clear that if Mooreโ€™s Law was going to hold, chipmakers would need shorter and shorter wavelengths of light to keep shrinking transistors. Extreme ultraviolet light, or EUV, sits way beyond the visible spectrum, at a wavelength far shorter than ordinary ultraviolet lamps. That short wavelength makes it possible to draw patterns on silicon at the tiniest scalesโ€ฆand I mean REALLY tiny.

Ernest Orlando Lawrence at the controls of the 37-inch cyclotron in 1938. A Nobel Prizeโ€“winning physicist and co-founder of Lawrence Livermore National Laboratory, Lawrenceโ€™s legacy in nuclear science and high-energy research paved the way for the laboratoryโ€™s later breakthroughs in lasers and plasma physics โ€” work that ultimately fed into the extreme ultraviolet light sources now powering the worldโ€™s most advanced chipmaking machines. (LLNL Public Domain)

At Lawrence Berkeley National Laboratory, researchers with expertise in lasers and plasmas were tasked with figuring out how to generate a powerful, reliable source of extreme ultraviolet light for chipmaking. Their solution was to fire high-energy laser pulses at microscopic droplets of tin, creating a superheated plasma that emits at just the right (tiny) wavelength for etching circuits onto silicon.

The movement of light on mirrors in an ASML EUV lithography machine. More on it below.

Generating the light was only the first step. To turn it into a working lithography system required other national labs to solve equally daunting problems. Scientists at Berkeleyโ€™s Center for X Ray Optics developed multilayer mirrors that could reflect the right slice of light with surprising efficiency. A branch of Sandia National Laboratories located in Livermore, California, worked on the pieces that translate light into patterns. So, in all: Livermore built and tested exposure systems, Berkeley measured and perfected optics and materials, and Sandia helped prove that the whole chain could run as a single machine.

Each EUV lithography machine is about the size of a bus, costs more than $150 million, and shipping one requires 40 freight containers, three cargo planes, and 20 trucks. (Photo: ASML)

It matters that this happened in public laboratories. The labs had the patient funding and the unusual mix of skills to attempt something that might not pay off for many years. The Department of Energy supported the facilities and the people. DARPA helped connect the labs with industry partners and kept the effort moving when it was still risky. There was no guarantee that the plasma would be bright enough, that the mirrors would reflect cleanly, or that the resists (the light-sensitive materials coated onto silicon wafers) would behave. The national labs could take that on because they are designed to tackle long horizon problems that industry would otherwise avoid.

Only later did private industry scale the laboratory breakthroughs into the giant tools that now anchor modern chip factories. The Dutch company ASML became the central player, building the scanners that move wafers with incredible precision under the fragile EUV light. Those systems are now capable of etching transistor features as small as 5 nanometersโ€ฆ5 billionths of a meter. You really canโ€™t even use the โ€œsmaller than a human hairโ€ comparison here since human hair variation is so large at this scale as to render that comparison kind of useless. However, many people still do.

The ASML machines are marvels of tech and engineering. Truly amazing feats human design. And they integrate subsystems from all over the world: Zeiss in Germany manufactures the mirrors, polished to near-atomic perfection, while San Diegoโ€™s Cymer (now part of ASML) supplies the laser-driven plasma light sources. The technology is so complex that a single scanner involves hundreds of thousands of components and takes months to assemble.

ASMLโ€™s EXE:5000 High-NA EUV lithography machine โ€” a room-sized tool that etches the tiniest features on the worldโ€™s most advanced computer chips. (ASML)

It was TSMC and Samsung that then poured billions of dollars into making these tools reliable at scale, building the factories that now turn EUV light into the chips powering AI and smartphones and countless other devices. Trillions of dollars are at stake. Some say the fate of humanity lies in balance should Artificial General Intelligence eventually emerge (again, I donโ€™t say that, but some do). All of this grew from the ingenuity and perseverance, along with the public funding, that sustained these California labs.

Itโ€™s disappointing that many of the companies profiting most from these technological breakthroughs are not based in the United States, even though the core science was proven here in California. That is fodder for a much longer essay, and perhaps even for a broader conversation about national industrial policy, something the CHIPS Act is only beginning to deal with.

However, if you look closely at the architecture of those monster machines, you can still see the fingerprints of the California work. A tin plasma for the light. Vacuum chambers that keep the beam alive. Reflective optics that never existed at this level before EUV research made them possible.

A photorealistic rendering of an advanced microprocessor, etched in silicon with extreme ultraviolet light โ€” the kind of breakthrough technology pioneered in U.S. national labs, but now fabricated almost entirely in Taiwan, where the future of digital society is being made.

We often celebrate garages, founders, and the venture playbook. Those are real parts of the California story. This is a different part, just as important. The laboratories in Livermore, Berkeley, and Sandia are public assets. They exist because voters and policymakers chose to fund places where hard problems can be worked on for as long as it takes. The payoff can feel distant at first, then suddenly it is in your pocket. Like EUV. Years of quiet experiments on lasers, mirrors, and materials became the hidden machinery of the digital age.

Riding Wave Energy in Los Angeles

Turning the steady motion of the Pacific into clean electricity, Eco Wave Powerโ€™s pilot at the Port of Los Angeles tests whether wave energy can become a real piece of Californiaโ€™s renewable future.

Eco-Wave’s Wave Energy Station at the Port of Los Angeles (Photo: Erik Olsen)

Earlier this week at the Port of Los Angeles, I stood with my colleague Tod Mesirow as a blue ribbon was cut and seven steel floaters dipped into the tide at AltaSea Marine Center in San Pedro. It was a milestone moment: the first onshore wave-energy project in the United States.

Wave energy is the process of converting the up-and-down motion of ocean waves into electricity. Engineers have been experimenting with the idea for decades, with pilot projects around the world, but very little major success. While no country has yet deployed wave power at large scale, efforts like this onshore wave-energy project in the United States aim to prove it can become a reliable part of the renewable mix.

Hydraulic hoses outside the Eco Wave Power container channel pressurized, eco-friendly fluid from the rising and falling floats. This motion drives pistons that power a generator, turning the steady rhythm of small waves along the Port of Los Angeles into clean electricity ready for the grid. (Photo: Erik Olsen)

Eco Wave Power, the company behind the technology, framed the event as the beginning of a new chapter in renewable energy, one that could eventually bring the restless motion of the sea onto the grid on a meaningful scale. As my instagram feed will attest, big waves contain a lot of power (the algorithm knows I love big wave surfing). But thatโ€™s not what this project is about. Instead, it relies on the small, steady waves that are almost always present along the California coast. Each rise and fall pushes eco-friendly hydraulic fluid through a system of pistons and pipes, building pressure that drives a motor connected to a generator. The process transforms the oceanโ€™s rhythm into electricity, which can then be fed into the nearby grid. This approach doesnโ€™t depend on dramatic swells, but on the reliable pulse of the sea.

Inna Braverman, the CEO of Eco-Wave told me that the pilot project’s small capacity is a proof of concept for a much larger series of installations along the California coast. “The installed capacity of this conversion unit is 100 kilowatts,” Braverman says. “The amount of power actually generated depends on the height and the weight period of the waves. So, 100 kilowatt installed capacity is up to 100 households.”

The choice of location is not incidental. The Port of Los Angeles is one of the busiest harbors in the world, lined with piers, breakwaters, and aging industrial structures that provide ideal platforms for attaching wave-energy devices. Unlike offshore wind, which requires building foundations in open water, Eco Wave Powerโ€™s design capitalizes on existing waterfront infrastructure, keeping costs lower and operations more accessible. The port also happens to be surrounded by electrical infrastructure, with substations and transmission lines nearby. That means energy generated by the floaters can be quickly sent into the grid, without the long and costly buildouts often required for renewable projects in remote places. And perhaps most importantly, this demonstration is unfolding at the doorstep of greater Los Angeles, a region of nearly 19 million people where clean energy demand is immense. To test wave power here is to bring it directly into the heart of a major population center, where its success or failure will matter on a national scale.

Harnessing the Pacificโ€™s rhythm, Eco Wave Powerโ€™s bright blue floats rise and fall along the Port of Los Angeles breakwater, marking the nationโ€™s first onshore wave-energy project and a new experiment in turning ocean motion into clean electricity. (Photo: Erik Olsen)

Congresswoman Nanette Dรญaz Barragรกn called the project โ€œhistory in the makingโ€ and tied it to her proposed $1 billion Marine Energy Technologies Acceleration Act, aimed at scaling up wave and tidal systems nationwide. California has already passed Senate Bill 605, directing the creation of a wave-energy roadmap, and local leaders like Port of Los Angeles officials spoke of the technology as a key tool to help the San Pedro Bay port complex reach its zero-emission goal within the next decade.

For Eco Wave Power, this was not just a ribbon cutting but the opening of a U.S. market that has long been cautious about marine renewables. Braverman announced future projects in Taiwan, India, and Portugal, while partners from Africa described feasibility studies in South Africa and Kenya. Taiwanโ€™s pilot at Suao Port could grow to 400 megawatts, while the Port of Ngqura in South Africa is being studied as a showcase for diversifying away from coal.

Inside the power container at the Port of Los Angeles, hydraulic fluid from the rising and falling floats is pressurized to drive a generator, transforming the steady rhythm of the ocean into clean electricity ready to be fed into the grid. (Photo: Erik Olsen)

The optimism is real, but the facts are more sobering. Wave energy has been tested in several places around the globe, often with promising beginnings but mixed long-term outcomes. The Mutriku plant in Spain has generated steady power for more than a decade, but at modest efficiency. Swedenโ€™s Sotenรคs project closed after just a few years of operation. The ocean is brutal on hardware: salt, storms, and marine growth wear down even the best-engineered devices. Costs remain high, and grid-scale capacity is far from proven.

Still, the potential is undeniable. The International Energy Agency estimates that global wave and tidal power could, in theory, supply a significant fraction of the worldโ€™s electricity needs. Unlike solar or wind, waves are relatively constant, offering a stable, predictable form of renewable generation. That reliability could make wave energy an important complement to other renewables, especially as grids grow more complex and storage remains expensive.

Inna Braverman, founder and CEO of Eco Wave Power, speaks at the ribbon-cutting ceremony at the Port of Los Angeles, celebrating the launch of the nationโ€™s first onshore wave-energy project and highlighting the technologyโ€™s potential to turn the oceanโ€™s motion into clean, renewable electricity (Photo: Erik Olsen)

But honesty requires saying wave power will not, on its own, solve the climate crisis. It is a piece of the puzzle, not the whole picture. The bulk of clean energy in the near term will continue to come from solar and wind, with geothermal, hydropower, and nuclear filling important roles. If wave energy finds its footing, it will likely be as a regional player, most valuable in countries with long, energetic coastlines and strong political will to diversify.

Watching the floaters rise and fall yesterday, we could sense the tension between ambition and reality. This pilot is small, but it demonstrates a willingness to try something new, to take the step from research tank to open water. Braverman called it โ€œopening the door to a new era of clean energy.โ€ That door may open slowly, and perhaps only partway, but the act of trying matters. The ocean is vast and restless, and if we can learn to work with it, wave energy could one day be one of the many forces nudging us toward a sustainable future.

The Story of Southern California Sand from Mountains to Surf

Beautiful day at a Southern California beach (Photo: Erik Olsen)

Southern Californiaโ€™s beaches are a miracle. More than just landscapes, theyโ€™re cultural treasures. In movies, ads, and music, the coastline often feels like its own character. To many of us who live here, the coastline is not just a place to swim or sunbathe but a symbol of freedom, fun, and the stateโ€™s enduring connection to the Pacific Ocean. 

And let’s face it, the beach would not be the beach without sand. 

Pick up some California wildlife gifts at our Etsy store. Seriously, they’re cool.

I didnโ€™t realize how essential sand is until I read Vince Beiserโ€™s The World in a Grain. It quickly became one of my favorite nonfiction books in recent years … and I read a lot of nonfiction. Think about it: without sand, there would be no roads, no skyscrapers, no glass. That means no windows, no windshields, no microscopes or telescopes. No fiber-optic cables. No computer chips, since silicon, the foundation of modern technology, is essentially refined sand. The list is endless. I get that it’s not all beach sand per se, but that’s a quibble.

However, that’s not what I want to focus on here. What struck me, as I was walking along the beach the other day, was a simpler question: where does all the sand on Southern Californiaโ€™s beaches actually come from?

San Gabriel Mountains (Photo: Erik Olsen)

Well, put yourself for a moment on the beach in Southern California. No shoes. It turns out most of the grains between your toes actually began their journey high in the mountains above LA, on craggy slopes far from the shore. Mostly, we are talking about the San Gabriel Mountains and other peaks in the Transverse Ranges that run east-west across Southern California. The rugged, crumbling peaks are made of granite and other crystalline rocks rich in quartz, feldspar, and mica. Through the relentless process of erosion, wind and rain loosen these minerals, which tumble into streams and rivers, such as the San Gabriel and Santa Ana and are carried out to sea. During storms, torrents of sediment rush downhill toward the coast, and that’s where ocean currents take over.

This region where wave action dominates is called the littoral zone (no, not the literal zone), and it is where sand gets pushed around through a process known as longshore drift. Waves arriving at an angle push sediment along the shore, creating a conveyor belt that can carry grains for miles.

Lifeguard tower in Southern California (Photo: Erik Olsen)

In Southern California, this natural process has been reshaping the shoreline for thousands of years, constantly adding sand to some beaches while stripping it away from others. A lot has changed recently though (I mean “recent” in geologic terms). Humans, as we often do, have f*cked things up a bit, changing the nature of our beaches since the late 1800s. The piece I wrote recently about the Wedge in Newport is a good example. Breakwaters and other “shoreline armoring” built along our coast have altered the movement of sand, sending much of it into deep water where it is lost.

Dams have also cut off a huge portion of sediment that would once have reached the coast, reducing Southern Californiaโ€™s natural sand supply by nearly half. To make up the difference, beach managers spend millions each year dredging sand from offshore deposits or harbor entrances and pumping it onto the shore. We’ve been doing this for nearly a century. Between 1930 and 1993, more than 130 million cubic yards of sand were placed on Southern California beaches, creating wide stretches like Santa Monica and the Silver Strand that are much larger today than they would have been naturally. And if you think this is a temporary thing, forget it. With climate change driving stronger storms and rising seas, the need to keep replenishing sand is only going to grow.

Big Tujunga Dam in Southern California (Photo: Erik Olsen)

For decades, geologists believed that rivers supplied as much as 90 percent of Californiaโ€™s beach sand. That view has shifted. Research from Scripps Institution of Oceanography shows that coastal cliffs also play a huge role on some beaches. Along the stretch from Dana Point to La Jolla, cliff erosion has been shown to contribute about half of the beach-sized sediment, and in some places up to 68 percent. This is especially true in dry years, when rivers deliver less. Still, on a statewide scale, rivers remain the main suppliers of sand. Studies from the California Coastal Sediment Management Workgroup show that, under present conditions, rivers account for about 90 percent of sand reaching Southern California beaches, with bluff erosion contributing roughly 10 percent.

Littoral cells in Southern California (Source: California Coastal Commission)

The sandโ€™s story does not end at the shoreline. Californiaโ€™s coast is divided into littoral cells, essentially self-contained systems with their own sand sources, transport pathways, and sinks. Most sand in Southern California moves north to south, carried by waves arriving from the northwest. Eventually, much of it is lost into submarine canyons like Mugu, Newport, and Redondo, where it drops into deep water and exits the system.

Beach sand can also come from more subtle sources. Shell fragments from marine life, volcanic ash from distant eruptions, and even windblown desert dust can mix into the sediment. Perhaps not surprisingly, in recent decades, scientists have discovered another ingredient in our sand: plastic. Studies at Point Reyes and Golden Gate National Parks found an average of about 140 microplastic particles per kilogram of beach sand, which works out to roughly 50 pieces in a single measuring cup. Even beaches farther south, like Cabrillo, average nearly 40 pieces per kilogram.

Staff collect sand samples at Cabrillo National Monument. Testing revealed that Cabrillo sand had the lowest average concentration of microplastics of all of the West Coast parks studied. Point Reyes and Golden Gate had the highest. (Photo: National Park Service)

Offshore sediment cores show that microplastic deposition has doubled every 15 years since the 1940s, with most fragments being synthetic fibers shed from clothing. These findings show that Californiaโ€™s sand is no longer entirely natural; it now carries the pernicious imprint of modern consumer life, with fragments of plastic woven into its mix of minerals and shells. Interestingly, the concentration of microplastics off the coast of California, where researchers carried out their studies, appears to be lower than in many other parts of the world. โ€œIf they were doing the same thing in the Yellow Sea in China, right outside some of the big rivers like the Yangtze and Yellow River, the concentrations would probably be huge and cause adverse effects,โ€ University of Michigan eco-toxicologist Allen Burton told Wired Magazine.

But look, the chance to walk or run on the beach is one of the real gifts of living in California. The sand that sticks to your towel, finds its way into your shoes, or gets stuck into your hair has traveled a long, remarkable journey to reach the shore. Itโ€™s true that some of it now includes plastic, which is unfortunate, but that doesnโ€™t diminish the joy of being at the beach. In a world where so much feels fast, fleeting, and digital, thereโ€™s something really cool and satisfying about putting your toes in the sand, a remarkable substance that is totally crucial to modern civilization, yet which is also timeless and ancient and part of the natural world around us.