The Scourge of Ghost Lobster Traps and the Battle to Save Marine Life in California

Ghost lobster trap off Santa Cruz Island in California’s Channel Islands (Photo: Erik Olsen)

Lobster is delicious. Let’s just get that out of the way. Yes, I’m sure there are some who either don’t enjoy the taste of this prolific crustacean, or who are allergic, but for my part, lobster (with a small vial of melted butter) is ambrosia from the sea.

But beyond its place on the plate, the California spiny lobster plays a vital ecological role: hunting sea urchins, hiding in rocky reefs, and helping to keep kelp forests in balance. Its value extends far beyond what it fetches at market. But beneath the surface, particularly around the Channel Islands lurks a growing problem that doesn’t just threaten lobsters. It threatens the entire marine ecosystem: ghost traps.

Dive ship Spectre off of Anacapa Island in California’s Channel Islands (Photo: Erik Olsen)

In Southern California, lobster fishing is both a cultural tradition and a thriving industry, worth an estimated $44 million annually to California’s economy from commercial landings as well as recreational fishing, tourism, and seafood markets.

In late April, I traveled to the Channel Islands with my colleague Tod Mesirow to see the problem of ghost lobster traps firsthand. We were aboard the Spectre dive ship and pulled out of Ventura Harbor on an overcast morning, the sky a uniform gray that blurred the line between sea and cloud. The swell was gentle, but the air carried a sense of anticipati on. We were invited by the Benioff Ocean Science Laboratory, which is conducting research and outreach in the area. Our visit took us to Anacapa and Santa Cruz Islands, where I would be diving to observe the traps littering the sea floor. Tod, meanwhile, remained topside, capturing footage and speaking with marine scientists. Even before entering the water, we could see the toll: frayed lines tangled in kelp, buoys adrift, and entire areas where dive teams had marked clusters of lost gear.

California spiny lobsters alive when the ghost trap was recovered (Photo: Erik Olsen)

Ghost traps are lobster pots that have been lost or abandoned at sea. Made of durable metal mesh and often outfitted with bait containers and strong ropes, these traps are built to last. And they do. For years. Sometimes decades. The problem is, even when their human operators are long gone, these traps keep fishing.

“It’s not uncommon to find multiple animals dead inside a single trap,” said Douglas McCauley, a marine science professor at UC Santa Barbara and director of the Benioff Ocean Science Laboratory who was onboard with us and leading the project. “It’s heartbreaking. These traps are still doing exactly what they were built to do, just without anyone coming back to check them.”

Douglas McCauley, director of the Benioff Ocean Science Laboratory at the University of California Santa Barbara holding a lobster caught in a ghost trap off the coast of the Channel Islands (Photo: Erik Olsen)

Around the Channel Islands National Marine Sanctuary, where fishing pressure is high and waters can be rough, thousands of traps are lost every season. Currents, storms, or boat propellers can sever buoys from their lines, leaving the traps invisible and unrecoverable. Yet they keep doing what they were designed to do: lure lobsters and other sea creatures inside, where they die and become bait for the next unfortunate animal. It’s a vicious cycle known as “ghost fishing.”

“They call them ghost traps because, like a ghost sailing ship, they keep doing their thing. They keep fishing.” said McCauley.

California Curated Etsy

Statewide, the numbers are staggering. Approximately 6,500 traps are reported lost off the California coast each fishing season, according to The California Department of Fish and Wildlife. The folks at the Benioff Ocean Science Laboratory said as many as 6,000 may lie off the coast of the Channel Islands alone. Ocean Divers removing marine debris have found traps stacked three and four high in underwater ravines—rusting, tangled, but still deadly. These ghost traps don’t just catch lobsters; they also trap protected species like sheephead, cabezon, octopuses, and even the occasional sea turtle or diving seabird.

Diver and Project Scientist Chase Brewster of the Benioff Ocean Science Laboratory collecting data on ghost lobster traps near California’s Channel Islands (Photo: Erik Olsen)

Nowhere is this more evident than around the Channel Islands. These rugged islands are home to some of California’s richest kelp forests and underwater canyons. The islands and their surrounding waters are home to over 2,000 plant and animal species, with 145 of them being unique to the islands and found nowhere else on Earth. In fact, the Channel Islands are often referred to as North America’s Galapagos for the immense diversity of species here.

The islands are also the site of the state’s most productive spiny lobster fisheries. Every fall, hundreds of commercial and recreational fishers flood the area, setting thousands of traps in a race to catch California spiny lobsters (Panulirus interruptus). But rough swells and heavy gear mean traps go missing. Boats sometimes cut the lines of traps, making them near impossible to retrieve from the surface. And because this region is a patchwork of state waters, federal waters, and marine protected areas (MPAs), cleanup and regulation are anything but straightforward.

California Spiny Lobster off Anacapa Island (Photo: Erik Olsen)

The traps are often difficult to locate, partly because of their remote placement and the notoriously rough waters around the Channel Islands. But the Benioff Ocean Science Laboratory has a powerful asset: side scan sonar. From the ship, they can scan and map the seafloor, where the ghost traps often appear as dark, rectangular shapes against the sand. Once spotted, the team uses GPS to log their exact location.

“It’s creates a picture made of sound on the seafloor and you see these large lego blocks staring at you in bright yellow on the screen and those are your lobster traps,” sayd McCauley. “There’s nothing else except a ghost trap that looks like that.”

Plunging into the frigid waters off Santa Cruz Island was a jolt to the system. Visibility was limited, just 10 to 15 feet, but I followed two scientists from the Benioff Ocean Science Laboratory down to a depth of 45 feet. Their task: to attach a rope to the trap so it could be hauled up by the boat’s winch.

Dive ship Spectre off the coast of Santa Cruz Island in California’s Channel Islands (Photo: Erik Olsen)

The water was thick with suspended particles, the light dimming quickly as we dropped lower. My 7mm wetsuit was just barely enough to stave off the cold. On the seafloor, the ghost trap emerged, a large rectangular cage resting dark and ominous in the sand. And it was teeming with life. Fish darted around its edges, lobsters clambered along the frame, and inside, several animals moved about, trapped and slowly dying. It was easy to see how a single trap could wreak quiet havoc for years.

California law technically requires all lobster traps to include biodegradable “escape panels” with zinc hinges that degrade over time, eventually allowing trapped animals to escape. But enforcement is tricky, and the panels don’t always work as intended. In practice, many traps, especially older or illegally modified ones, keep fishing long after they should have stopped. That’s what we were out here to find.

A baby octopus caught in a ghost trap in the waters off California’s Channel Islands (Photo: Erik Olsen)

Complicating matters is the fact that once a trap goes missing, there’s no easy way to retrieve it. Fishers are not legally allowed to touch traps that aren’t theirs, even if they’re obviously abandoned. And while a few small nonprofits and volunteer dive teams conduct periodic ghost gear removal missions, they can’t keep pace with the scale of the problem.

“At this fishery, we can’t get them all,” says McCauley. “But by going through and getting some species out and getting them back in the water, we’re making a difference. But in the process, we’re coming up with new ideas, new technologies, new research methods, which we think could play a role in and actually stopping this problem in the first instance.”

Once abundant along California’s coast, this large abalone spotted off Santa Cruz Island is a rare sight today—a quiet reminder of how overfishing, disease, and environmental change have decimated their populations. (Photo: Erik Olsen)

Back topside, the recovery team aboard the Spectre used a powerful hydraulic winch to haul the trap onto the deck. After climbing out of the cold water, still shivering, I joined the others to get a closer look. The trap was heavy and foul-smelling, but what stood out most was what was inside: lobsters, maybe ten or more. Some had perished, but many were alive and thrashed their tails when lifted by the scientists. Females could be identified by their broader, flatter tail fins—adapted to hold eggs. The team carefully measured each one before tossing them back into the sea, the lobsters flipping backward through the air and disappearing into the depths.

There were other animals, too. Large, rounded crabs known as Sheep crabs, common to these waters, scuttled at the bottom of the trap. Sea snails were clustered along the mesh, and in one cage, there were dozens of them, clinging and crawling with slow purpose. Even baby octopuses made appearances, slithering out onto the deck like confused aliens. I picked one up gently, marveling at its strange, intelligent eyes and soft, shifting forms, before tossing it back into the sea in hopes it would have another chance at life.

Ghost lobster trap lies on the seafloor off of Santa Cruz Island in California’s Channel Islands (Photo: Erik Olsen)

By then, the day had brightened and the sun had come out, easing the chill that lingered after the dive. The traps would be taken back to Ventura, where they’d likely be documented and disposed of. But this day wasn’t just about saving individual animals or pulling traps off the seafloor—it was about data. The Benioff team wants to understand just how big of a problem ghost traps really are. It’s not just about the number of traps lost each season, but the broader ecological toll: how many animals get caught, how many die, and how these traps alter the underwater food web. Every recovered trap adds a piece to the puzzle. This trip was about science as much as rescue.

State agencies, including the California Department of Fish and Wildlife (CDFW), have started pilot programs aimed at tackling ghost gear. In 2023, CDFW launched a limited recovery permit program that allows fishers to collect derelict traps at the end of the season, provided they notify the state. But participation is voluntary and poorly funded.

Elsewhere, states like Maine and Florida have created large-scale, state-funded programs to identify and remove ghost traps, often employing fishers in the off-season. California, despite having the nation’s fourth-largest lobster fishery, has yet to make a similar investment.

Ghost lobster traps recovered from the seafloor off the coast of California’s Channel Islands (Photo: Erik Olsen)

Some solutions are already within reach. Mandating GPS-equipped buoys for commercial traps could help track and retrieve gear before it’s lost. More robust escape hatch designs, made from materials that dissolve in weeks rather than months, would shorten the lifespan of a lost trap. And expanding retrieval programs with funding from fishing license fees or federal grants could make a big dent in ghost gear accumulation.

But even more powerful than regulation may be public awareness. Ghost traps are out of sight, but their damage is far from invisible. Every trap left behind in the Channel Islands’ waters becomes another threat to biodiversity, another source of plastic and metal waste, and another reminder that marine stewardship doesn’t stop when the fishing season ends.

Key to the whole effort is data:

“Every one of the animals that we put back in the water today, we’ll be taking a measure,” says McCauley. “After a little bit of crunching in the lab, we’ll be able to say, oh, actually, you know, every single trap undercuts the fishery by x percent for every single year that we don’t solve the problem.”

Doug McCauley with a lobster trap retrieved from the seafloor off the coast of California’s Channel Islands (Photo: Erik Olsen)

As we headed back toward Ventura, Tod and I talked with Douglas McCauley and Project Scientist Neil Nathan from the Benioff Ocean Science Laboratory. The team had collected a total of 13 traps that day alone, and 34 over the several days they’d been out. There was a sense of satisfaction on board, quiet but real. Each trap removed was a small win for the ecosystem, a little less pressure on an already strained marine environment.

“I would call today an incredible success, ” said Neil Nathan. “Feeling great about the number of traps we collected.”

California has long been a leader in ocean conservation. If it wants to stay that way, it needs to take ghost fishing seriously, not just around the Channel Islands, but up and down the coast. After all, we owe it to the lobsters, yes, but also to the underwater forests, reef communities, and countless species whose lives are tangled in the nets we leave behind.

Where the Sand on Southern California’s Beaches Comes From

Southern California’s sandy beaches are more than just popular spots for surfing and sunbathing—they’re the product of a dramatic geologic story that’s been unfolding for millions of years. With their sweeping ocean views and turquoise waters, these iconic coastlines attract millions every year. But few people stop to think about how these beaches actually came to be.

To get the full picture, you have to go way back—about 200 million years, to the Mesozoic era. Back then, the land we now know as Southern California was underwater, part of a vast oceanic plate. As the North American continent drifted westward, it collided with and began to override the Pacific plate. This slow-motion crash, called subduction, set the stage for the coast we see today.

This subduction zone generated intense heat and pressure, melting portions of the oceanic crust and upper mantle. The resulting magma rose to the surface, forming a chain of volcanic islands and large underground magma chambers. Over time, these chambers cooled and solidified into granite, forming what’s now known as the Southern California batholith—an enormous mass of igneous rock that underlies much of the region. This tectonic activity also helped uplift and shape many of the mountain ranges we see today, including the Santa Monica and San Gabriel Mountains.

CALIFORNIA CURATED ART ON ETSY

Purchase stunning art prints of iconic California scenes.
Check out our Etsy store.

Beach sand, particularly in Southern California, is primarily composed of quartz and feldspar mixed with silvery mica and milky quartz. These minerals originally existed in the granite of the local mountains, miles from the shoreline. Studies have shown that much of the sand on Southern California beaches actually comes from the San Gabriel mountain range. 

“Sediment that’s derived from granite-type watersheds is generally comprised of a lot of quartz,” says UCLA geography professor Tony Orme. “It tends to be light in color.”

San Gabriel Mountains

The San Gabriel Mountains are part of the Transverse Ranges, are known for their rugged terrain, diverse ecosystems, and recreational opportunities, stretching approximately 68 miles from Los Angeles County to San Bernardino County.

It may be surprising to learn that the San Gabriel Mountains, towering over Los Angeles, play a critical role in forming the region’s stunning beaches. They are, in fact, the primary source of much of Southern California’s beach sand, particularly around Los Angeles. But how does this granitic mountain material end up miles away on the beach?

The answer lies in the forces of erosion and weathering. The mountains’ granite is gradually worn down over time by rain, wind, and cycles of freezing and thawing. This erosion process, which can take millions of years, results in smaller and smaller particles. Rainfall and streams transport these eroded particles down the mountain slopes and into the regions rivers.

Southern California beach

These rivers, such as the Los Angeles and San Gabriel Rivers, act as conveyor belts, carrying the eroded material – the future sand of our beaches – toward the Pacific Ocean. Renowned geomorphologist Douglas Sherman of the University of Alabama has extensively studied these sediment transport processes, highlighting their importance in coastal formation.

Sand continuously migrates from land to sea. As rivers met the ocean, they deposited their sediment load, forming deltas. Coastal currents then took over, redistributing these sediments along the shoreline, a process known as longshore drift. Waves, powered by the coastal winds, continually pushes this sediment onto the shore, gradually creating the wide, sandy beaches we enjoy today.

This ongoing transfer is accompanied by watershed run-off and the erosion of bluffs and hillsides, which carry sand toward the beach. Grains of sand then embark on a southward journey along the coast, while the smaller sediment particles are swept further offshore and deposited deep on the ocean floor.

Lifeguard tower (Erik Olsen)

While there is still widespread belief among geologists that most of California’s sand originates in the mountains, two relatively recent studies conducted by researchers at the University of California, San Diego have suggested that another key source of erosion might be the grand sea cliffs of the region.

“Much to our surprise,” expressed Scott Ashford, formerly a professor of engineering at UCSD, and now at Oregon State, who employed a mobile laser imaging system to examine coastal formations for one of the studies. “It’s revealing that our comprehension of the beach system isn’t as thorough as we’ve presumed.”

CALIFORNIA CURATED ON ETSY

Purchase stunning art prints of iconic California scenes.
Check out our Etsy store.

His research analyzed six years’ worth of imaging data from the 50-mile (80-kilometer) coastline stretching from Dana Point to La Jolla. Previously, geologists had conjectured that up to 90% of the beach sand in this sector originated from deposits transported by coastal rivers, but Ashford’s research indicated that the sea cliff erosion accounts for some 67% of Southern California’s beach sand. However, since Ashford’s study was focused on such a small area of the coast, many geologists are wary of embracing his conclusions.

The coastal journey of the sand concludes either when it is blown inland to form dunes or more frequently, when it descends into a submarine canyon, such as Monterey Canyon in Northern California. The deep underwater chasm of a canyon signifies the endpoint of a littoral cell. A littoral cell is a unique coastal region where sand embarks on a journey from land into the ocean, traverses down the coast, and then exits the system. The volume of sand accessible to beaches equals the quantity entering the littoral cell minus the quantity exiting. Changes to this sand budget can result in the contraction or even complete vanishing of beaches.

Hermosa Beach (Erik Olsen)

The formation of Southern California’s beaches is not a completed process but an ongoing one. Waves and currents continue to shape the coastline, sometimes depositing sand to widen the beach, and at other times eroding the shoreline. Los Angeles has paved most of its major rivers, reducing the amount of sand that comes from the mountains onto the beaches. In fact, it is not uncommon for Southern California beaches to be missing close to 50% of their historical sand supply.

California has added sand to its beaches for decades through projects called “nourishment”. These projects are often used to restore eroded beaches and protect against sea level rise. Sand is typically dredged offshore and pumped onto the shore, where trucks spread it around. The goal is to widen the beach so that wave energy breaks sooner and dissipates towards the bluff face.

Rosanna Xia’s book, California Against the Sea: Visions for Our Vanishing Coastline (2023) is an excellent source of information on California beach erosion and the threats posed by the loss of significant portions of the coast. The book explores how human activities like coastal development, urbanization, and dam construction have intensified natural erosion processes. She provides a historical context for these developments and their long-term impacts, while also exploring innovative adaptation strategies and community-led efforts to protect the coastline. Balancing a sense of urgency with cautious optimism, Xia presents a vision for a resilient future where informed policies and sustainable practices can help safeguard California’s coastal treasures for generations to come.

Los Angeles River

Understanding the geological history of Southern California’s beaches not only adds depth to our appreciation of these natural wonders but also highlights the need for careful stewardship. By minimizing our environmental impact, reducing development and mitigating the effects of climate change, we can ensure that these incredible landscapes continue to evolve and endure for generations to come.