Californiaโ€™s Eye on the Cosmos: The SLAC-Built Camera That Will Time-Lapse the Universe

Images from the most powerful astronomical discovery machine ever created, and built in California

A breathtaking zoomed-in glimpse of the cosmos: this first image from the Vera C. Rubin Observatory reveals a deep field crowded with galaxies, offering just a taste of the observatoryโ€™s power to map the universe in unprecedented detail.
(Credit: NSFโ€“DOE Vera C. Rubin Observatory)

I woke up this morning to watch a much-anticipated press conference about the release of the first images from the Vera Rubin Telescope and Observatory. It left me flabbergasted: not just for what we saw today, but for what is still to come. The images werenโ€™t just beautiful; they hinted at a decade of discovery that could reshape what we know about the cosmos.I just finished watching and have to catch my breath. What lies ahead is very, very exciting. 

The first images released today mark the observatoryโ€™s “first light,” the ceremonial debut of a new telescope. These images are the result of decades of effort by a vast and diverse global team who together helped build one of the most advanced scientific instruments ever constructed. In the presser, ลฝeljko Iveziฤ‡, Director of the Rubin Observatory and the guy who revealed the first images, called it “the greatest astronomical discovery machine ever built.”

This image combines 678 separate images taken by NSFโ€“DOE Vera C. Rubin Observatory in just over seven hours of observing time. Combining many images in this way clearly reveals otherwise faint or invisible details, such as the clouds of gas and dust that comprise the Trifid nebula (top) and the Lagoon nebula, which are several thousand light-years away from Earth.
(Credit: NSFโ€“DOE Vera C. Rubin Observatory)

The images shown today are a mere hors d’oeuvre of what’s to come, and you could tell by the enthusiasm and giddiness of the scientists involved how excited they are about what lies ahead. Here’s a clip of ลฝeljko Iveziฤ‡ as the presser ended. It made me laugh.

So, that first image you can see above. Check out the detail. What would normally be perceived as black, empty space to us star-gazing earthlings shows anything but. It shows that in each tiny patch of sky, if you look deep enough, galaxies and stars are out there blazing. If you know the famous Hubble Deep Field image, later expanded by NASAโ€™s James Webb Space Telescope, you may already be aware that there is no such thing as empty sky. The universe contains so much stuff, it is truly impossible for our brains (or at least my brain) to comprehend. Vera Rubin will improve our understanding of what’s out there and what we’ve seen before by orders of magnitude.   

This image captures a small section of NSFโ€“DOE Vera C. Rubin Observatoryโ€™s view of the Virgo Cluster, revealing both the grand scale and the faint details of this dynamic region of the cosmos. Bright stars from our own Milky Way shine in the foreground, while a sea of distant reddish galaxies speckle the background.
(Credit: NSFโ€“DOE Vera C. Rubin Observatory)

Iโ€™ve been following the Rubin Observatory for years, ever since I first spoke with engineers at the SLAC National Accelerator Laboratory about the digital camera they were building for a potential story for an episode of the PBS show NOVA that I produced (sadly, the production timeline ultimately didn’t work out). SLAC is one of California’s leading scientific institutions, known for groundbreaking work across fields from particle physics to astrophysics. (We wrote about it a while back.)

The night sky seen from inside the Vera Rubin Observatory (Credit: NSFโ€“DOE Vera C. Rubin Observatory)

Now fully assembled atop Chileโ€™s Cerro Pachรณn, the Vera C. Rubin Observatory is beginning its incredible and ambitious mission. Todayโ€™s presser focused on unveiling the first images captured by its groundbreaking camera, offering an early glimpse of the observatoryโ€™s vast potential. At the heart of the facility is SLACโ€™s creation: the worldโ€™s largest digital camera, a 3.2-gigapixel behemoth developed by the U.S. Department of Energy.

This extraordinary instrument is the central engine of the Legacy Survey of Space and Time (LSST), a decade-long sky survey designed to study dark energy, dark matter, and the changing night sky with unprecedented precision and frequency. We are essentially creating a decade-long time-lapse of the universe in detail that has never been captured before, revealing the dynamic cosmos in ways previously impossible. Over the course of ten years, it will catalog 37 billion individual astronomical objects, returning to observe each one every three nights to monitor changes, movements, and events across the sky. I want to learn more about how Artificial Intelligence and machine learning are being brought to bear to help scientists understand what they are seeing.

The camera, over 5 feet tall and weighing about three tons, took more than a decade to build. Its focal plane is 64 cm wide-roughly the size of a small coffee table-and consists of 189 custom-designed charge-coupled devices (CCDs) stitched together in a highly precise mosaic. These sensors operate at cryogenic temperatures to reduce noise and can detect the faintest cosmic light, comparable to spotting a candle from thousands of miles away.

The LSST Camera was moved from the summit clean room and attached to the camera rotator for the first time in February 2025. (Credit: RubinObs/NOIRLab/SLAC/DOE/NSF/AURA)

Rubinโ€™s camera captures a massive 3.5-degree field of view-more than most telescopes can map in a single shot. Thatโ€™s about seven times the area of the full moon. Each image takes just 15 seconds to capture and only two seconds to download. A single Rubin image contains roughly as much data as all the words The New York Times has published since 1851. The observatory will generate about 20 terabytes of raw data every night, which will be transmitted via a high-speed 600 Gbps link to processing centers in California, France, and the UK. The data will then be routed through SLACโ€™s U.S. Data Facility for full analysis.

The complete focal plane of the future LSST Camera is more than 2 feet wide and contains 189 individual sensors that will produce 3,200-megapixel images. Crews at SLAC have now taken the first images with it. Explore them in full resolution using the links at the bottom of the press release. (Credit: Jacqueline Orrell/SLAC National Accelerator Laboratory)

The images produced will be staggering in both detail and scale. Each exposure will be sharp enough to reveal distant galaxies, supernovae, near-Earth asteroids, and other transient cosmic phenomena in real time. By revisiting the same patches of sky repeatedly, the Rubin Observatory will produce an evolving map of the dynamic universe-something no previous observatory has achieved at this scale.

What sets Rubin apart from even the giants like Hubble or James Webb is its speed, scope, and focus on change over time. Where Hubble peers deeply at narrow regions of space and Webb focuses on the early universe in infrared, Rubin will cast a wide and persistent net, watching the night sky for what moves, vanishes, appears, or explodes. It’s designed not just to look, but to watch. Just imaging the kind of stuff we will see!

The LSST Cameraโ€™s imaging sensors are grouped into units called โ€œrafts.โ€ Twenty-one square rafts, each with nine sensors, will capture science images, while four smaller rafts with three sensors each handle focus and telescope alignment. (Credit: Farrin Abbott/SLAC National Accelerator Laboratory)

This means discoveries wonโ€™t just be about what is out there, but what happens out there. Astronomers expect Rubin to vastly expand our knowledge of dark matter by observing how mass distorts space through gravitational lensing. It will also help map dark energy by charting the expansion of the universe with unprecedented precision. Meanwhile, its real-time scanning will act as a planetary defense system, spotting potentially hazardous asteroids headed toward Earth.

But the magic lies in the possibility of the unexpected. Rubin may detect rare cosmic collisions, unknown types of supernovae, or entirely new classes of astronomical phenomena. Over ten years, itโ€™s expected to generate more than 60 petabytes of data-more than any other optical astronomy project to date. Scientists across the globe are already preparing for the data deluge, building machine learning tools to help sift through the torrent of discovery.

And none of it would be possible without SLACโ€™s camera. A triumph of optics, engineering, and digital sensor technology, the camera is arguably one of the most complex and capable scientific instruments ever built. I don’t care if you’re a Canon or a Sony person, this is way beyond all that. Itโ€™s a monument to what happens when curiosity meets collaboration, with Californiaโ€™s innovation engine powering the view.

As first light filters through the Rubin Observatoryโ€™s massive mirror and into SLACโ€™s camera, we are entering a new era of astronomy-one where the universe is not just observed, but filmed, in exquisite, evolving detail. This camera wonโ€™t just capture stars. It will reveal how the universe dances.

Pasadena: City of Science

How Pasadena Became a Hub of Scientific Endeavor

Pasadena and Colorado Boulevard (Erik Olsen)

Yeah, yeah, you know the Rose Bowl.

But Pasadena isnโ€™t just about pretty streets and historic buildingsโ€”itโ€™s also a powerhouse of scientific discovery. Tucked between its tree-lined avenues and old-town charm is a city buzzing with innovation, home to some of the most groundbreaking research and brilliant minds in the world. Ask Einstein.

All right. Let’s keep going. While the climate of Southern California, with its mild weather and clear skies, was advantageous for astronomical observations and outdoor research, the city’s location also played a role in attracting scientists and researchers seeking a desirable living environment. The pleasant climate and natural beauty of the region were significant draws for many. But the city also owes much of its scientific prestige to the Second World War, when the city emerged as a pivotal intellectual and manufacturing hub for aeronautics and space, driven by its strategic location, advanced research institutions like the California Institute of Technology (Caltech), and an influx of skilled labor. The region’s aerospace industry, including companies such as Hughes Aircraft, Douglas Aircraft, Lockheed and North American Aviation, all of which played a crucial role in producing military aircraft and pioneering advancements in aerospace technology. By the end of World War II, 60 to 70 percent of the American aerospace industry was located in Southern California;

Planetary Society Headquarters in Pasadena (Erik Olsen)

The scientific pedigree of Pasadena can be traced back to notable historical figures, among them the great Richard Feynman, a theoretical physicist known for his work in quantum mechanics and his Nobel Prize-winning contributions to quantum electrodynamics. Feynman was a long-time faculty member at the California Institute of Technology (Caltech) and left an indelible mark on both physics and science education. 

Richard Feynman (Caltech Archives)

In engineering, there is Theodore von Kรกrmรกn, a Hungarian-American mathematician, aerospace engineer, and physicist, who is remembered for his pioneering work in aerodynamics and astronautics. He was responsible for crucial advances in aerodynamics characterizing supersonic and hypersonic airflow. He is best known for the von Kรกrmรกn vortex street, a pattern of vortices caused by the unsteady separation of flow of a fluid around a cylinder, which has applications in meteorology, oceanography, and engineering. Von Kรกrmรกn was also a key figure in the establishment of the Jet Propulsion Laboratory (JPL), which is managed by Caltech (see below).

Cal Tech (Erik Olsen)

In the mid-20th century, Albert Einstein spent several winters at CalTech, further solidifying the cityโ€™s reputation as a center of scientific thought. During his stays from 1931 to 1933, Einstein delivered lectures and collaborated with some of the brightest minds in physics, which had a lasting impact on the scientific community in Pasadena and beyond.

Albert Einstein in Pasadena (CalTech Archives)

CalTech itself is a cornerstone of Pasadenaโ€™s scientific community. As one of the premier science and engineering institutes globally, it has been at the forefront of numerous breakthroughs in various fields including physics, biology, and engineering. The university is not only a powerhouse of innovation but also a nurturing ground for future scientists, evidenced by its association with 39 Nobel laureates.

Similarly, the Jet Propulsion Laboratory (JPL), which is technically located in La Canada Flintridge (geographically), but has a Pasadena mailing address, is a unique collaboration between NASA and CalTech. JPL is the leading US center for the robotic exploration of the solar system. Its engineers and scientists have been behind some of the most successful interplanetary missions, including the Mars Rover landings, the Juno spacecraft currently exploring Jupiter, and the Voyager probes that have ventured beyond our solar system. 

NASA’s Jet Propulsion Laboratory (Erik Olsen)

Further enriching Pasadenaโ€™s scientific landscape is the Carnegie Observatories, part of the Carnegie Institution for Science. This establishment has been a pivotal site for astronomical discoveries since the early 20th century. Today, it continues to push the boundaries of astronomical science by managing some of the most advanced telescopes in the world and conducting cutting-edge research in cosmology and astrophysics.

Jupiter as captured by NASA JPL’s Juno spacecraft (NASA/JPL-Caltech/SwRI/MSSS/David Marriott)

Though in the mountains above Pasadena, the Mt. Wilson Observatory, founded by George Ellery Hale, was home to some of the world’s most powerful telescopes in the early 20th century, including the 60-inch and 100-inch Hooker telescopes. (See our feature). These instruments were integral to groundbreaking discoveries, such as Edwin Hubbleโ€™s revelation of the expanding universe, which was supported by data from Mt. Wilson’s telescopes.

The Planetary Society, also headquartered in Pasadena, adds to the cityโ€™s scientific aura. Co-founded by Carl Sagan, Bruce Murray, and Louis Friedman in 1980, this nonprofit organization advocates for space science and exploration. It engages the public and global community in space missions and the search for extraterrestrial life, demonstrating the cityโ€™s commitment to fostering a broader public understanding of science.

Mt. Wilson Observatory (Erik Olsen)

Pasadenaโ€™s prowess in scientific innovation is further amplified by the presence of numerous high-tech companies and startups that reside in the city. These range from aerospace giants to biotech firms, many of which collaborate closely with local institutions like CalTech and JPL. Moreover, incubators such as IdeaLab and Honeybee Robotics (there are numerous robotics companies…which I think we will do a stand alone story about in the future) have been instrumental in fostering a culture of innovation and entrepreneurship in the city. Founded in 1996 by Bill Gross, IdeaLab has helped launch companies that have had significant impacts on technology and science, from energy solutions to internet technologies.

Pasadena’s status as a city of science is not just rooted in its institutions but also in its history and the ongoing contributions of its residents and thinkers. The city continues to be a fertile ground for scientific discovery and technological innovation, reflecting a deep-seated culture that celebrates curiosity and the pursuit of knowledge. This environment not only attracts some of the brightest minds from around the globe but also supports them in pushing the boundaries of what is possible, making Pasadena a true city of science.

JPL and the Voyager Golden Record: Humanityโ€™s A Cosmic Mixtape in Space

The Jet Propulsion Laboratory (JPL) in La Canada Flintridge, California is well-known for building and sending spacecraft far into the cosmos to help us better understand the universe. But the agency was also extensively involved in one of the most ambitious and symbolic projects in the history of space exploration, one that in many ways was more art than science: the Voyager Golden Record.

In 1977, as the twin Voyager spacecraft prepared to journey beyond the confines of our solar system, they carried with them what might be the most profound artifacts ever created by humanity: the Voyager Golden Records. These records, designed to last a billion years, are time capsules intended not for Earthlings but for potential extraterrestrial finders or future humans. Engraved in gold-plated copper discs, the records encapsulate the Earth’s diverse cultural and natural heritageโ€”from music to languages to sounds of nature.

Photo: NASA/JPL-Cal Tech

The idea of the Golden Record was developed by a talented team led by Carl Sagan, the renowned astronomer and science communicator. Sagan, alongside other prominent figures such as Frank Drake, Ann Druyan, science journalist Jon Lomberg, and Linda Salzman Sagan, crafted a selection that aimed to represent the entirety of Earth. The content ranged from classical music by Bach and Beethoven to greetings in 55 languages, natural sounds like thunderstorms and whales, and a diverse set of 115 images depicting life and culture on Earth.

But producing a record that could survive the harsh environment of space, while also being understandable and playable by beings of unknown technology, posed unique challenges. This is where the Jet Propulsion Laboratory (JPL) stepped in, playing a pivotal role in transforming this ambitious vision into a tangible, durable artifact capable of traversing the cosmos.

Inspection of the engraving of the Voyager Golden Record.
Photo: NASA/JPL-Cal Tech

JPL, managed by Caltech under a NASA contract, was primarily responsible for the construction and operation of the Voyager spacecraft. Their expertise was crucial not just in the scientific instrumentation and engineering of the spacecraft but also in integrating the Golden Records. The labโ€™s engineers worked meticulously to ensure that the records were equipped with everything needed for potential playback: a cartridge, a needle, and symbolic instructions detailing their use. These instructions, etched onto the recordโ€™s cover, provided a universal map indicating Earthโ€™s location in relation to pulsar stars, which are highly stable and can be used as galactic landmarks.

JPLโ€™s involvement extended to the actual physical preparation of the records. They coordinated closely with RCA Records to produce the master disc from which the Voyager records were replicated. The final products were then plated in gold and encased in a protective aluminum jacket, designed to withstand the vacuum of space, cosmic rays, and extreme temperatures.

Photo: NASA/JPL-Cal Tech

The technical contributions of JPL ensured that the Golden Records were not only a feat of cultural expression but also a marvel of scientific and engineering ingenuity. By equipping the Voyager spacecraft with these messages, JPL helped bridge the human desire to explore and communicate with the tangible reality of space travel. The records, mounted aboard Voyagers 1 and 2, continue to be ambassadors of Earth, carrying sounds, music, and images intended to convey the story of our world to whoever, or whatever, might find them.

Today, both Voyager spacecraft, with their Golden Records, have entered interstellar space, marking them as the most distant human-made objects in existence. They serve as reminders of humanityโ€™s ambition to reach beyond our immediate grasp and to communicate across vast cosmic distances. JPLโ€™s role in this historic endeavor highlights the profound connection between human creativity and technological advancement, ensuring that our message to the cosmos will endure long after the original voices have faded.

JPL written on the Voyager Golden Record
Photo: NASA/JPL-Cal Tech

As these records voyage through the cosmos, they remind us not just of where we have been, but also of the far reaches that our curiosity can take us. Through the combined efforts of visionaries like Carl Sagan and the engineering prowess of JPL, the Voyager Golden Record stands as a testament to the best of human knowledge, culture, and technological achievement.


The Voyager Golden Records are phonograph records, much like the vinyl records used to listen to music before digital media became widespread. They are constructed from copper discs coated in gold to withstand the harsh environment of space. Each record is encased in a protective aluminum jacket, along with a cartridge and a needle. Instructions in symbolic language explain the origin of the spacecraft and indicate how the record should be played. The playback speed (16 2/3 revolutions per minute) is much slower than typical records, which typically spin at 33 1/3 or 45 rpm.

The content of the Golden Record is a meticulously curated selection intended to represent the diversity of life and culture on Earth:

Sounds of Earth: The records include audio of nature sounds like thunder, wind, and animals (including the songs of birds and whales). Human sounds like footsteps, a heartbeat, and laughter are also embedded, capturing the biological and social essence of Earth.

The DNA structure magnified, light hit image is one of the pictures electronically placed on the phonograph records which are carried onboard the Voyager 1 and 2 spacecraft. Credit: Jon Lomberg

Musical Selections: There are 27 musical tracks from different cultures and eras, ranging from classical pieces by Bach and Beethoven to traditional songs from various cultures, including a Navajo chant and a Peruvian wedding song. These selections were intended to showcase the diversity of musical expression on Earth.

Greetings in 55 Languages: A variety of spoken greetings from “Hello” in English to ancient languages like Akkadian. The inclusion of a broad range of languages aims to depict the linguistic diversity of humanity.

Images: The record also contains 115 analog-encoded photographs and diagrams. These images show a wide range of subjects, including humans of different sexes and races, everyday activities, scientific knowledge like mathematical definitions, and the Solar System. The intent was to offer a visual summary of our planet and its inhabitants.

CALIFORNIA CURATED ART ON ETSY

Purchase stunning art prints of iconic California scenes.
Check out our Etsy store.

Message from the UN Secretary-General and the President of the United States: There are also printed messages from prominent global leaders at the time, including U.S. President Jimmy Carter and United Nations Secretary-General Kurt Waldheim.

Sounds of Human Origin: Beyond natural and environmental sounds, the record also includes a montage of the sounds of Earth, a screaming chimpanzee, a medley of human-originated noises like tools, vehicles, and a kiss, among others.

The idea behind the Voyager Golden Record is not just to communicate where and who we are but also to share a message of hope and peace with any possible recipient, even if that recipient is far in the future. The chances of the Voyager spacecraft actually being found by extraterrestrial life are slim, but the Golden Record serves as a profound gesture of goodwill and a testament to the human spirit’s longing to reach out and explore the universe.

Journey to the Iron Giant: NASA’s Psyche Mission Could Unlock the Secrets of a Metallic World

The Psyche spacecraft in the clean room of the Jet Propulsion Laboratory in La Canada Flintridge, CA

A NOVEL PROPULSION SYSTEM WILL TAKE US TO A MASSIVE METAL ASTEROID IN DEEP SPACE

Imagine being able to move your car with your breath. One long blow out the back window, and your car begins speeding down the highway. Now imagine that if you keep blowing, your car accelerates to over 124,000 miles per hour. 

Of course, if you actually did this on Earth, you would turn blue in the face and your car would remain still. But in the vast vacuum of empty space where there is little gravity and no atmospheric drag, that tiny amount of thrust can be very effective. 

On October 12, NASAโ€™s Jet Propulsion Laboratory in La Caรฑada Flintridge will launch a spacecraft toward Mars and Saturn that will put this idea to the test. The agency is sending a 3,600-pound vehicle into space propelled by futuristic solar electric thrusters that deliver a force equivalent to the mass of about two quarters. They also happen to emit a cool blue glow that looks like something out of Blade Runner. 

The Hall Thruster’s eerie blue glow is due to it’s emission of Xenon gas

The spacecraft, called Psyche, launched aboard a SpaceX Falcon Heavy rocket from the historic Launch Complex 39 at NASAโ€™s Kennedy Space Center. The spacecraft will initially be set on a trajectory to fly by Mars, where it will receive a gravity assist, catapulting it further out into the solar system. In late 2026, the spacecraft will enter into orbit around a rare metal asteroid called Psyche 16 (hence the spacecraftโ€™s name). The journey to the asteroid will take over three and a half years and cover over 1.5 billion miles.ย 

Perhaps the most intriguing — and ultimately beneficial — components of the Psyche mission will be its use of solar electric thrusters. Also known as Hall Effect thrusters, the novel propellant system was designed to be efficient and cost-effective. Solar energy will be generated from a five-panel, cross-shaped solar array that will unfold and immediately begin harvesting energy from the sun. At 800 square feet, they are the largest panels ever installed at JPL, and when fully deployed, will extend about the area of a singles tennis court.  

The resulting energy will be used to turn xenon, a dense, colorless, odorless noble gas into xenon ions, atoms that carry a charge because the number of electrons does not equal the number of protons. Xenon is found in Earth’s atmosphere in trace amounts and is used in car headlights and plasma TVs. As the xenon ions are accelerated out of the thruster, they create thrust, propelling the spacecraft forward. The amount of thrust, however, will be minuscule compared to that of chemical-based propulsion systems normally employed on missions like those to Mars, Jupiter, and Saturn. 

โ€They operate at a low thrust level,โ€ says David Oh, Psycheโ€™s project system engineering manager. โ€œYou canโ€™t use it to launch from the earth. But in space, you operate these thrusters over a long period of time and you can get to very high speeds.โ€ 

Psyche spacecraft inside the NASA JPL clean room (Erik Olsen)

In other words, in space, a force equivalent to a hastily expelled deep breath is enough to move a ton and a half of metal through space at a speed more than one hundred times that of a fired bullet. 

Psyche will carry over 1000 kilograms of xenon in its tanks, more than enough to get the spacecraft to Psyche and complete its 21-month mission. JPL engineers estimate that the spacecraft would burn through about 15 times that amount of propellant by weight if it had to use traditional chemical thrusters.  

โ€œWe did try conventional chemical propulsion, and we determined if we did that, we would have quadrupled the mass of the spacecraft. It would have been very difficult to launch and very expensive to build. But this technology was mature and ready to go,โ€ says Oh.

This is not the first time an ion propulsion system has been used in space. Communication satellites orbiting the earth use them regularly. Colorado-based company Maxar Technologies developed and built the Hall thrusters for near-earth orbit, and NASA has purchased them from the company and made some modifications, but this will be the first time they will be used to venture into deep space.

Psyche asteroid (JPL)

โ€œWe needed advanced propulsion to get into orbit. We were looking at what could we buy rather than building our own thruster from scratch,โ€ says Oh.

Because theyโ€™re so efficient, Psycheโ€™s Hall thrusters can operate nearly nonstop for years without running out of fuel, says Oh. When its mission is over, the spacecraft might have lots of fuel left over, and they will have to decide whether to find other puzzles to solve. If the mission proves a success, Psyche’s Hall thrusters could play a major role in propelling future missions into deep space. 

A Metal Asteroid?

Scientists are giddy at what they might find once Psyche, propelled by the Hall Thruster system, arrives at the asteroid.  

โ€œItโ€™s a kind of world that humans have never visited before,โ€ says Arizona State Universityโ€™s Lindy Elkins-Tanton, principal investigator in charge of the mission. โ€œMost of the exploration we do is going and learning more about a body weโ€™ve already visited. Psyche, we have no photos of it, no one has ever done a flyby or really studied it. Itโ€™s unlike every asteroid we know, as far as we can tell.โ€   

Astronomers have been aware of Psyche’s existence ever since since it was first discovered on March 17, 1852, by the Italian astronomer Annibale de Gasparis. The asteroid, computer models of which resemble a potato, was named after the Greek mythological figure Psyche, the goddess of the soul. It is the largest and most massive of the known M-type asteroids (M stands for metal), and is one of a dozen of the most massive objects in the asteroid belt between Mars and Saturn. 

Scientists believe that Psyche may be part of the core of a body called an early planetesimalโ€”, a moon-sized type of protoplanet that may have once been much larger, but was perhaps struck many years ago by other heavy orbiting objects, shattering it into pieces, but leaving this particular blob of metal and rock behind. Such collisions were common when the early solar system was forming.

If Psyche was once the heart of a planet with a strong convective current and a molten iron-nickel core at its center, then scientists expect it will still have a magnetic field. A magnetometer aboard the spacecraft will measure its pull, while cameras will photograph and map the surface, collecting high-resolution multispectral images. Because of the asteroidโ€™s unique composition, scientists have no idea what to expect when the images first start rolling in. 

โ€œWhat does an impact crater into metal look like? We do not know?โ€ says Elkins-Tanton. 

In a unique twist for this mission, JPL plans to release the images captured by Psyche immediately onto the internet so that anyone can view them within a half-hour of being received. 

โ€œWeโ€™re not going to edit them or curate them. Weโ€™re going to send them out so that everyone can be looking at this funny object for the first time,โ€ says Elkins-Tanton.

In addition, a series of spectrometers will help us understand what the asteroid is made of by measuring the gamma rays and neutrons emitted from it. Depending on what scientists discover, the mission could help answer fundamental questions about the formation of our solar system. 

That will depend, of course, on whether the propulsion system functions as designed. As we stand on the precipice of a new era in space exploration, Hall thrusters aren’t just rocket scienceโ€”they’re the closest thing we have to cosmic alchemy, promising to redefine how we navigate the vast tapestry of our solar system.

Hey there! If you enjoy California Curated, consider donating the price of a coffee to support its creation!

Mt. Wilson Observatory in Los Angeles is a Celestial Time Capsule

Mt. Wilson Observatory (Erik Olsen)

Perched atop a lofty peak in the San Gabriel Mountains of California sits a historic treasure, one of the great astronomical tools of the 20th century: the Mt. Wilson Observatory. For more than 100 years, it has been a centerpiece for major astronomical discoveries, playing a pivotal role in our understanding of the universe. The observatory, with its rich history shaped by devoted scientists, advanced technology, and revolutionary discoveries, stands as a testament to humanity’s relentless pursuit of knowledge.

The story of the Mt. Wilson Observatory begins with the visionary astronomer George Ellery Hale. Recognizing the importance of location, Hale selected Mt. Wilson for its elevation of 5,710 feet and its proximity to the Pacific Ocean, which provided consistently stable, clear skiesโ€”perfect conditions for astronomical observations. In 1904, he installed the first telescope at the site, the Snow Solar Telescope, specifically designed for studying the Sun. This telescope marked the beginning of groundbreaking solar research at the observatory and set the stage for future advancements in astronomy.

Many brilliant minds walked the halls and explored domes of Mt. Wilson, but few shone as brightly as Edwin Hubble. In the 1920s, using the Hooker Telescope โ€“ then the largest in the world โ€“ Hubble made two groundbreaking discoveries:

Before Hubble’s observations at Mt. Wilson, the prevailing belief was that our galaxy, the Milky Way, constituted the entirety of the universe. The existence of other galaxies was not yet confirmed, and what we now know as galaxies were often referred to as “nebulae” and thought to be part of the Milky Way.

Hubble’s groundbreaking discovery in 1923-1924, using the 100-inch Hooker telescope at Mt. Wilson, revealed that the Andromeda Nebula (now known as the Andromeda Galaxy) was far beyond the Milky Way, providing the first concrete evidence that the universe extended far beyond our own galaxy. This discovery fundamentally altered our understanding of the cosmos, leading to the realization that the universe is vast and filled with countless galaxies.

Expanding Universe

Using the powerful Hooker telescope once again, Hubble carefully observed distant galaxies and made a groundbreaking discovery: these galaxies were moving away from us. Even more astonishing was that the farther a galaxy was, the faster it was receding. This finding provided clear evidence that the universe itself was expanding. Hubbleโ€™s revelation shattered the long-held belief in a static universe and laid the groundwork for the Big Bang theory, suggesting that the universe had a specific beginning and has been expanding ever since. Through Hubble’s meticulous observations, humanity gained a new understanding of a dynamic, ever-evolving cosmos, far more vast and mysterious than anyone had previously imagined.

Edwin Hubble

Many other scientists have also made major discoveries at Mt. Wilson. One luminary, Harlow Shapley, used the observatory to gauge more specifically our place in the Milky Way. Before Shapley, Earth was believed to be at the galaxy’s center. However, through his observations of globular clusters, he pinpointed our more humble location on a distant spiral arm.

Another notable scientists who made significant contributions at Mt. Wilson Observatory was Walter Baade. Baade, a German-American astronomer, played a key role in refining our understanding of the universe by studying stars in different populations. During World War II, when Los Angeles experienced blackout conditions, Baade took advantage of the clearer skies at Mt. Wilson to observe celestial objects with unprecedented clarity. He discovered that there were two distinct types of stars in the Milky Way, which led to the realization that galaxies had different stellar populations. This breakthrough allowed Baade to correct the scale of the universe, doubling the previously estimated size of galaxies and distances to them. His work helped refine Hubble’s expanding universe theory and provided a deeper understanding of the evolutionary stages of stars. Baade’s observations were critical in the advancement of modern cosmology and our comprehension of the vastness of space.

Instruments of Enlightenment

Over the years, Mt. Wilson has housed a suite of powerful telescopes:

  • The Hooker Telescope: At 100-inches, it was the world’s largest when it was installed in 1917. It’s the very instrument Hubble used for his revolutionary work.
  • The Snow Solar Telescope: The observatory’s inaugural instrument remains crucial for solar studies.
  • The CHARA Array: The Center for High Angular Resolution Astronomy array is an impressive configuration of six telescopes that function as an interferometer. It allows for sharper images of stars than even the Hubble Space Telescope. The CHARA Array has a spatial resolution equivalent to a single telescope 331 meters (over 1000 ft) in diameter. Light from each of the six telescopes is transported through fiber optics to a special beam-combining room. 

Not only has Mt. Wilson been instrumental in observing distant stars, but it also has a unique device: the Snow Horizontal Solar Telescope. This apparatus, combined with the spectrograph, was used to study the sun’s magnetic fields. It has since been fundamental in understanding solar cycles and the impact of solar phenomena on Earth’s climate.

Mt. Wilson Observatory

In 2020, the Bobcat Fire, the second largest fire on record in Los Angeles County to date, burned over 115,000 acres and was active for more than three months. Annually, the team at Mount Wilson Observatory takes measures against potential forest fires, removing fire-hazardous invasive plants and ensuring their extensive water tanks are full for the fire suppression system. Just a few months prior to the blaze, they had fitted new high-capacity hydrants. These proactive steps played a pivotal role in safeguarding the Observatory when the Bobcat Fire flames approached within a mere 20 feet of its perimeter. A dozen fire squads, each consisting of 40 to 50 firefighters from various units, tirelessly worked day and night to protect this cherished landmark.

Scene at Mt. Wilson after the 2020 Bobcat Fire (Erik Olsen)

Visitors to the Mt. Wilson Observatory have a rare chance to not only tour the grounds but also look through the same telescopes that revolutionized astronomy. Public “Telescope Nights” offer the exciting opportunity to observe the night sky through the famous 60-inch or 100-inch telescopes, the latter being the largest in the world open to the public. These sessions allow people to view celestial objects like planets, star clusters, and nebulae in stunning detail. Reservations are necessary for these events, as spots fill up quickly due to high demand. Additionally, private group sessions and special events can be arranged, providing an unforgettable, up-close experience with the universe. Guided tours are also available for those who want to dive into the observatory’s rich history, tracing the steps of astronomers who made some of the greatest discoveries of the 20th century.

Hey there! If you enjoy California Curated, consider donating the price of a coffee to support its creation!

Mars helicopter Ingenuity is ready for its “Wright Brothers” moment

If all goes well, in late July, NASA will do something it’s never done before. The agency will launch a new mission to Mars with the aim of landing a small helicopter on the surface that will perform several test missions to see if we can fly on the surface of the Red Planet.

This is not an easy task, but it will be massively historic.

โ€œThis is very analogous to the Wright brothers moment, but on another planet,โ€ MiMi Aung, the project manager of the Mars helicopter told the New York Times.

The helicopter will be aboard the Perseverance, the fifth robotic rover NASA has sent to Mars. The copter and the rover were both designed and built at at at NASAโ€™s Jet Propulsion Laboratory in La Canada Flintridge. The project has been in development over the past six years.

Credit: JPL

If successful, the small helicopter will initiate a new era for robotic exploration, with the opportunity to get an aerial view of Mars and possibly other worlds in the solar system.

Flying on Mars is not the same as doing so here on earth. There is little atmosphere on Mars, and so taking off requires more power and larger helicopter blades than here on earth. In fact, the atmosphere on the red planet is just 1/100th as dense as Earthโ€™s. Scientists say that flying on Mars is the same as flying at an altitude of 100,000 feet on Earth. That’s three Mount Everests. No helicopter on earth has ever flown higher than 45,000 feet.

JPL scientists say that the project would have been impossible just 10 years ago, but a revolution in the miniaturization of electronics, high-powered batteries and lightweight materials for rotor blades has made the new mission possible.

It took several iterations and experiments to get the copter to lift off in s straight line inside a specially-designed chamber that simulated the Mars atmosphere.

Over 30 days, the helicopter will make up to five flights. For most of the time, however, the copter will remain still, waiting for solar panels to recharge the batteries.

The first is to go up about a few feet and hover for up to 30 seconds, then land. Subsequent flights will be longer, higher, farther. The plan is to test the copter on several short liftoffs on Mars, reaching perhaps just a few feet above the dusty plain where it will be released from the Perseverance. On the fifth flight, assuming all systems are go, the copter will lift off to 15 feet and fly out about 500 feet and come back. Two cameras will help the copter navigate and the flight will last a minute and a half.

This is an extremely exciting time for JPL’s planetary exploration project. The Juno project has been sending back stunning images of Jupiter, including strange hexagonal cloud formations at the poles of the giant planet.

Credit: JPL

Enjoying the California Science Weekly? Check out our weekly newsletter that comes out every Friday.

Also, check out one of our recent features on the California scientific illustrator David Goodsell whose watercolor painting of the coronavirus is “beautiful, but deadly”.

Southern California’s unheralded role in Apollo 11

For the 50th Anniversary of Apollo 11, we bring you a story about our state’s contribution to that great historical event.

Buzz Aldrin standing on the moon during Apollo 11 (NASA)

This summer Americans have Apollo fever. July 20, as most everyone knows, is the 50th anniversary of the Apollo moon landing, when astronauts Neil Armstrong and Buzz Aldrin became the first humans to set foot on the moon. Many people, including some of our most eminent historians, have called it the greatest achievement in the history of mankind. 

But when we think about Apollo and attempt to place it here on earth, we typically think about Apollo Mission Control Center in Houston, Texas. Who can forget Neil Armstrongโ€™s famous words: “Houston, Tranquility Base here. The Eagle has landed.”

So what did this experiment accomplish? A great deal, it turns out. 

Or maybe we think of the fiery liftoff of the Saturn V rocket from Kennedy Space Center on Merritt Island, Florida. And in the Northeast, many are also aware of the Massachusetts Institute of Technology’s huge contribution to the software written for the Apollo mission. A wonderful new book about the Apollo mission by Charles Fishman titled One Giant Leap: The Impossible Mission That Flew Us to the Moon, discusses at length the challenges faced by MIT computer programmers in the very early days of software development.ย 

But few people probably realize that Southern California can lay claim to a lot of Apollo 11 history. Where, you might ask?

First of all, there is Downey.ย ย 

North American Aviation factory in Downey, California

Both the New York Times and KCRW have interesting stories about how the Apollo 11 command module and the accompanying service module were actually built on a 160-acre swath of land in Downey called the North American Aviation Factory. The site is now home to a strip mall with a Wal-Mart, TJ Maxx and 24-hour Fitness. Turns out, too, that the camera systems that flew on Apollo were also developed in Southern California, as was the second stage of the gigantic Saturn 5 rocket. The backstory of 84-year-old Shelby Jacobs, who helped develop the camera system that captured iconic scenes of the separation of the first and second stages of the Saturn 5 rocket, is heart-breaking. Jacobs, who is black, couldnโ€™t live in Downey, as most black NASA employees lived in Watts.ย 

But thereโ€™s more to Californiaโ€™s role in Apollo. In La Canada Flintridge, home of the Jet Propulsion Laboratory, one of the most important experiments of the whole mission was developed.

The Apollo 11 Laser Ranging Retroreflector Experiment was one of several major scientific endeavors that were part of the epic space mission. Developed and monitored at JPL, it consisted of a reflector that was positioned on the moon by Armstrong and Aldrin and aimed back at Earth. Lasers here on Earth fired pulses of concentrated light that were then reflected and detected by special receivers on the ground. The laser reflector consisted of 100 fused silica half-cubes, called corner cubes, mounted in a 46-centimeter (18-inch) square aluminum panel. Later, on Apollo 14 and 15 missions, two additional reflectors were set up on the surface of the moon.  

“Itโ€™s very exciting,” says Turyshev. “This is the longest continuing experiment in the history of space science.”

Slava G. Turyshev, NASA’s Jet Propulsion Laboratory

The reflectors are too small to be seen from Earth, and the task of actually hitting them was a major technical challenge. Even though a laser is highly concentrated light, by the time the light reaches the moon, the beam is roughly 2.5 kilometers (1.5 miles) wide, and detecting the light that reflected back was very difficult. Scientists back then likened the effort to using a rifle to hit a moving dime two miles away. Like the moon landing itself, it was audacious.

โ€œIt was a very clever experiment that changed the way we think about the moon,โ€ Slava G. Turyshev, an astrophysicist at JPL involved with instrument design for the new generation of lunar laser operations, told California Curated.

Laser Ranging Retroreflector - NASA
Laser Ranging Retroreflector – NASA

After the laser beam bounced off a reflector (it takes about 1.3 seconds for light to make the round trip), it came back to earth and was detected by ranging observatories in Texas, Hawaii and France, that use extremely sensitive amplification equipment. Even under the best atmospheric viewing conditions, just one photon hits the observatory every few seconds. But that one photon tells us a lot.

So what did this experiment accomplish? A great deal, it turns out. 

Before the experiment, we had a decent idea how far the Moon is from Earth within a few feet. But based on data gathered from the Lunar Laser Ranging Experiment, we were able to determine that distance with amazing precision, down to under 5mm. The level of accuracy, said Dr. Jean Dickey, who was the Jet Propulsion Laboratory team investigator at the time (and who died in 2018), โ€œrepresents one of the most precise distance measurements ever made. The degree of accuracy is equivalent to determining the distance between Los Angeles and New York to one-fiftieth of an inch.” 

Lunar laser reflector
Lunar laser reflector on the moon. Credit: NASA

The experiment also verified Einstein’s theory of relativity, which states that all bodies fall with the same acceleration regardless of their mass. It determined that there are small scale variations in the length of an Earth day, changing by about one-thousandth of a second over the course of a year. The changes are caused by the atmosphere, tides, and the Earth’s core. The experiment also discovered that the Moon probably has a liquid and a solid core comprising some 20% of the Moon’s radius.

We all know that the moon causes tides on earth, but it turns out the tides also have a direct influence on the moon’s orbit, and measurements from the Lunar Laser Ranging Experiment showed that the moon is receding from Earth at a rate of about 3.8 centimeters (1.5 inches) per year. โ€œThatโ€™s a big number, says Turyshev. “Initially, it puzzled people, but now itโ€™s well understood and its an effect weโ€™d expect.โ€

The reason that the moon is receding from earth has to do with what’s known as tidal energy dissipation. It takes gravitational energy to hold the moon in place, and over time, some of that energy dissipates, causing the moon to slowly slip away. That’s no cause for alarm in our lifetimes, but over millions of years, it means there will be an impact on the Earth’s tides and more.

Each of the two laser arrays that were left on the moon during later Apollo missions improved on the one that came before it. In fact, the array left behind by Apollo 15 is three times the size of the array left by Apollo 11. The Russians also placed two laser arrays on the moon called Lunokhod 1 and Lunokhod 2 in 1973.

Model of a Soviet Lunokhod program rover (Wikipedia)

The arrays from those Apollo missions and the Russian landers continue to provide valuable data to scientists here on earth, including tests of general relativity and other theories of gravity. New measurements are taken every year by several countries, all of whom regularly take ranging measurements for different experiments. JPL’s Turyshev estimates that more than 25,000 final range measurements have been taken since 1969.

“Itโ€™s very exciting,” says Turyshev. “This is the longest continuing experiment in the history of space science.”

And just in time for this yearโ€™s Apollo 11 anniversary, more arrays are being developed at JPL and elsewhere that will fly on upcoming lander missions to the moon as part of NASA’s ambitious Artemis program. The old reflectors are still working, says Turyshev, but they are losing their reflectance, and advances in laser technology and materials science will allow future reflectors to be a thousand times more powerful than the ones they replace.

NASA says it hopes to put a man on the moon by 2024 and have a sustained presence there by 2028, but several lander missions are planned sooner than that, and NASA expects each one may carry a laser ranging device designed to bring a flood of new science back to earth.

“We’re in a renaissance [of ranging technology],” says Turyshev.