Get Your Nukes on Route 66: The Wild Plan to Use Nuclear Weapons to Blast a Highway Through the California Desert

…and they shall beat their swords into plowshares, and their spears into pruning hooks: nation shall not lift up sword against nation, neither shall they learn war any more. Micah 4:3

Fake rendering of an atomic bomb exploding near road in Mojave Desert.

In the early 1960s, the U.S. government seriously considered using nuclear bombs to solve a civil engineering challenge: building a highway bypass through the rugged terrain of California’s Mojave Desert. Dubbed Project Carryall, the plan would have involved detonating a series of nuclear devices to blast a path for a stretch of highway and railroad intended to reroute Route 66 and ease congestion. The idea sounds absurd today, but at the time, the U.S. was actively exploring ways to use nuclear energy for peaceful purposes.

Project Carryall was part of a broader initiative known as Operation Plowshare, launched by the Atomic Energy Commission (AEC) to explore the potential of using nuclear explosions in constructive ways. Proposed ambitious projects included using nuclear explosions for excavation, mining, and infrastructure development. Ideas included creating artificial harbors, digging new canals like the “Pan-Atomic Canal,” stimulating natural gas production through underground detonations, and creating tunnels or underground reservoirs.

The idea was conceived in 1951 as a way of “beating atomic arms into plowshares.” The underlying logic was that controlled nuclear blasts could do the work of traditional excavation on a much larger and faster scale. Proponents of the project, including argued that using nuclear bombs could reduce the time and cost involved in these types of infrastructure projects, providing a technological leap forward.

Edward Teller, a key figure in the development of the hydrogen bomb, was actively involved in promoting Project Carryall as part of his broader support for Operation Plowshare. His earlier contributions to the successful creation of the H-bomb in 1952 helped cement his reputation as a leading nuclear physicist, and he saw projects like Carryall as a way to repurpose atomic energy for large-scale civil engineering projects​.

Teller was a highly controversial figure due to his staunch advocacy for the use of nuclear technology, both in weapons development and peaceful applications like Project Carryall. His role in the hydrogen bomb’s creation, along with his support for large-scale nuclear projects, earned him both admiration and criticism, particularly after he testified against Robert Oppenheimer, which many viewed as a betrayal of his fellow scientists. Teller, who died in 2003, went to his grave convinced that nuclear geo-engineering was a missed opportunity.

Schematic and map of Project Carryall in the California Desert

The proposal for Project Carryall specifically targeted the construction of a new transportation corridor in Southern California. By the early 1960s, Route 66 had become notorious for traffic bottlenecks, particularly as postwar car ownership and travel boomed. To bypass the tight curves and mountainous terrain of the Cajon Pass area, engineers envisioned a straighter, more efficient route through the Bristol Mountains. The task of carving out such a path would have been an immense undertaking with traditional methods. Enter the nuclear option. Maybe we could dig with the bomb.

A feasibility study conducted by the Atchison, Topeka, and Santa Fe Railway (ATSF) sought assistance from the U.S. Atomic Energy Commission citing the Bristol Mountains as the ideal location for the project. Collaborating with the Commission’s San Francisco office and the Lawrence Radiation Laboratory (now the Lawrence Berkeley National Laboratory and a Department of Energy-funded U.C. Berkeley offshoot), the study concluded that a nuclear-excavated bypass was not only “technically feasible” but also significantly cheaper than traditional excavation methods.

Public domain, via Atomic Skies

Project Carryall aimed to carve a path through the Bristol Mountains, about 11 miles north of Amboy, California, a popular stop along Route 66, using 22 nuclear devices with yields ranging from 20 to 200 kilotons. Engineers planned to drill holes along a 10,940-foot section of the mountainside, each 36 inches in diameter and between 343 to 783 feet deep, reinforced with corrugated metal to house the nuclear explosives. These detonations, which would have been fired in two groups of 11 simultaneously, were expected to remove around 68 million cubic yards of earth, creating a cut up to 360 feet deep and between 600 and 1,300 feet wide. The total yield of the explosions, 1,730 kilotons, was equivalent to about 115 times the explosive power of Little Boy, the atomic bomb dropped on Hiroshima. The blasts would have essentially carved the path through the mountains in seconds​.

Project Storax Sedan shallow underground nuclear test by the United States, used for a cratering experiment. 6 July 1962, Nevada Test Site Yield: 104 kt. The main purpose of the detonation was to asses the non military dimension of a nuclear explosion.

Citing data from 1962’s Project Sedan, the Atomic Energy Commission estimated that work in the area could safely resume just four days after the nuclear detonation. This projection was highlighted in a 2011 report by the Desert Research Institute, affiliated with the University of Nevada, Reno, which examined the feasibility and safety of such operations during the era of nuclear excavation projects. The Sedan nuclear test displaced around 12 million tons of earth with a single 104-kiloton blast. This test created a massive crater and sent radioactive debris into the atmosphere.

The 1962 “Sedan” plowshares shot displaced 12 million tons of earth and created a crater 320 feet deep and 1,280 feet wide.
(National Nuclear Security Administration)

The projected combined costs for the railroad tunnel and highway in Project Carryall were estimated at $21.8 million, equivalent to roughly $216.96 million today. The nuclear excavation method was expected to cost $13.8 million (about $137.34 million in 2023 dollars), excluding the price of the nuclear devices themselves. Traditional excavation was estimated at $50 million, or approximately $497.61 million today. Although the cost of the nuclear devices was classified, it was assumed to be less than the gap between conventional and nuclear methods, making the nuclear approach seem more cost-effective at the time.

Mid-20th century scientists envisioned a new Panama Canal blasted down to sea level with thermonuclear explosives. (Lawrence Livermore National Laboratory)

As wild as this plan seems today, it wasn’t entirely out of place in the context of its time. The Cold War era was marked by an optimistic belief in the power of technology, particularly nuclear technology, to solve big problems. With Operation Plowshare, the U.S. government was looking for ways to demonstrate the peaceful uses of nuclear energy. Proponents of Project Carryall framed the use of nuclear devices for highway construction as a sign of progress, imagining a future where atomic energy could help reshape the American landscape in new and innovative ways.

However, there were significant hurdles to the project’s realization, many of them environmental and logistical. Although the AEC touted the precision of the nuclear blasts, the potential consequences of radiation were harder to dismiss. The detonation of nearly two dozen nuclear devices in the middle of California’s desert would likely have released dangerous levels of radioactive fallout, contaminating the land, air, and possibly even water supplies for nearby communities. Engineers also anticipated “occasional rock missiles” projected as far as 4,000 feet (1,200 m) from the blasts. While the nearby town of Amboy was not expected to experience significant effects, there was greater concern about the impact on a natural gas pipeline in the vicinity, which would require pre-blast testing to assess potential risks​. Further, concerns about the safety of workers, residents, and wildlife made it increasingly difficult to justify the project.

Project Carryall was abandoned due to a combination of environmental, political, and logistical concerns. As public awareness of the dangers of nuclear fallout grew, the potential for radioactive contamination became a significant issue, especially with the predicted large dust cloud and the risk to nearby natural gas pipelines. The signing of the Limited Test Ban Treaty in 1963, which prohibited nuclear tests that produced radioactive debris across borders, further complicated the project’s prospects. Moreover, the environmental movement was gaining traction during the 1960s, leading to increased opposition to nuclear excavation. Traditional construction methods, though more costly and time-consuming, were ultimately deemed safer and more politically feasible. By the mid-1960s, the California Highway Division (Now Caltrans) withdrew from the project, and nuclear excavation was abandoned in favor of conventional approaches. The highway bypass was eventually constructed using traditional methods, without the need for nuclear blasts.

Project Carryall Marker sign in Ludlow, California

While it never came to fruition, Project Carryall remains a striking example of the U.S. government’s audacious postwar optimism and the belief that nuclear technology could solve even the most mundane problems. It serves as a reminder of the tension between technological ambition and environmental responsibility—a lesson that resonates even more today. The story of Project Carryall is one of the stranger chapters in the history of America’s nuclear age, but it highlights how far we’ve come in understanding the limits and dangers of nuclear energy beyond warfare.

Today, the Carryall project is memorialized by a roadside marker in Ludlow, the nearest town to the west of the site.

J. Robert Oppenheimer: The Berkeley Era and The Birth of the Manhattan Project

With the release of the movie Oppenheimer, it’s worth taking a look at the role that California played in one of the most important technological developments of the 20th century: the making of the atomic bomb. The Manhattan Project, the prodigious scientific endeavor that produced the world’s first nuclear weapons, cast a long, dark shadow over the mid-20th century. But amid the mushroom clouds, there lies a tale of innovation and scientific genius that originated from an unlikely source—the University of California, Berkeley.

The film team filmed several scenes at Berkeley, adding a vintage car and 1940s-era lampposts to the campus. Oppenheimer taught at UC Berkeley from 1929 to 1943 — his office was on the third floor of Physics North (then named LeConte Hall) 

For years, America’s physics powerhouse resided in the East. But in the post-WWI era, the western horizon blazed with opportunity. Visionary administrators at Caltech and UC Berkeley threw financial muscle behind their bold mission: to make physics research a priority.

By the dawn of the 1930s, their investments bore fruit. The American Physical Society‘s president hailed California as a hotbed of physics innovation, equating it with the East in the academic landscape of the discipline. Universities played high-stakes poker for the talents of up-and-coming physicists like Oppenheimer and Ernest Lawrence, known for his groundbreaking work in photoelectricity and ionization.

Visit the California Curated store on Etsy for original prints showing the beauty and natural wonder of California.

J. Robert Oppenheimer, one of the leading physicists of the 20th century, is often remembered as the ‘father of the atomic bomb’. However, his journey toward this formidable title began at Berkeley, an intellectual crucible where his talent for theoretical physics was honed, ultimately leading him to oversee the Manhattan Project, a scientific endeavor that would change the world.

J. Robert Oppenheimer, Enrico Fermi and Ernest O. Lawrence at UC Berkeley in 1940. Courtesy: Lawrence Berkeley National Laboratory

Oppenheimer’s relationship with Berkeley began in 1929 when he joined as an Assistant Professor of Physics. This was an exciting period in the realm of science. Quantum mechanics was in its infancy and a new breed of scientists was emerging, eager to unlock the secrets of the universe. Oppenheimer, with his insatiable curiosity and infectious enthusiasm, was just the right person for this time of exploration.

During his years at Berkeley, Oppenheimer made significant contributions to quantum mechanics, notably his work on the Oppenheimer-Phillips process. This theory describes a particular type of nuclear reaction that occurs during the absorption of a neutron by a nucleus, an understanding that would later prove pivotal to the development of nuclear energy.

Outside the laboratory, Oppenheimer was an adored figure, known for his quick wit and charismatic teaching style. He was instrumental in building the physics program at Berkeley into perhaps the finest in the country by attracting some of the brightest minds of the time. Together, they would be known as dubbed the “luminaries”.

J. Robert Oppenheimer (Ed Westcott/U.S. Department of Energy via Bay City News)

“The group met secretly in his office at the northwest corner of the top floor of ‘old’ LeConte Hall. This office, like others on the top floor, has glass doors opening out onto a balcony,” wrote Raymond T. Birge, former chair of the Berkeley physics department at the time. “This balcony is readily accessible from the roof. To prevent this method of entry, a very heavy iron netting was placed over the balcony. A special lock was placed on the door to the office and only Oppenheimer had the key. No janitor could enter the office, nor could I, as chairman of the department,”

Hans Bethe, one of the great German-American theoretical physicists of the age said Oppenheimer established UC Berkeley as the “greatest school of theoretical physics the United States has ever known.”

Although he was increasingly recognized as a pivotal figure in theoretical physics, former students say he remained accessible, consistently urging his students to question norms and extend limits. He actively promoted a culture of inquiry among his students, even if his responses occasionally seemed harsh. However, Oppenheimer’s questions to his student speakers were meant to clarify rather than to humiliate, often aimed more at enlightening the audience than himself. His rapport with his students was unexpectedly casual. He provided an open-door policy, inviting his students to visit his office anytime to utilize the physics resources within his personal collection.

J. Robert Oppenheimer with Glenn T. Seaborg and Ernest O. Lawrence in early 1946. (Photo courtesy of Berkeley Lab)

Oppenheimer’s life at Berkeley wasn’t all physics. A man of varied interests, he was an avid hiker, horseback rider, and aficionado of literature, poetry, and art. These varied interests made him a multifaceted character and helped him foster connections with many prominent figures across different fields. His unique combination of scientific genius, humanity, and leadership qualities made him a standout candidate for the enormous task that lay ahead – the Manhattan Project.

While no major Manhattan Project facilities graced the Golden State, Berkeley, nestled in the heart of California, emerged as an unsung hero of the project. Berkeley offered more than a tranquil academic setting; it provided an assembly line of experts that would revolutionize nuclear science. Not only was Berkeley home to Oppenheimer the university also attracted other nuclear-era luminaries like Ernest Lawrence, and chemists Glenn Seaborg.

Berkeley had always been special. California’s first land-grant university, founded in 1868, Berkeley underwent a metamorphosis under the leadership of Robert Sproul. From 1930 to 1958, Sproul spearheaded the transformation of Berkeley into a hub of intellectual firepower. The University of California system burgeoned across the state, with Berkeley, the original campus, earning a reputation as one of the nation’s foremost research institutions. Its powerhouse physics department became a beacon in the dark world of the Manhattan Project.

Berkeley’s list of accomplishments in physics is long and distinguished, but one discovery stands out – the identification of plutonium. Edwin McMillan, a promising physicist at Berkeley, ventured into the wilderness of uranium fission products. In 1940, he stumbled upon an unknown substance – element 93, or as he named it, “neptunium,” a hat tip to the distant planet Neptune. McMillan predicted that neptunium decayed into plutonium, the elusive element 94.

Glenn Seabord – Wikipedia

Glenn Seaborg, another Berkeley savant, picked up where McMillan left off when the latter migrated east to work at MIT. Seaborg unveiled the heart of plutonium, exposing its fundamental chemical and nuclear properties, including its high propensity for fission. As the world’s leading expert on plutonium, Seaborg directed the ambitious effort to separate plutonium from uranium and other reactor products.

Meanwhile, Ernest Lawrence led a research group that broke boundaries with the cyclotrons at the Rad Lab. They used the 60-inch cyclotron to bombard uranium with neutrons, producing plutonium for scrutiny. But Lawrence had a revelation. In 1941, he realized the cyclotron could also operate as a mass spectrometer, effectively isolating uranium-235 from uranium-238. This technique was later adopted at Oak Ridge’s Y-12 Separation Plant, enabling large-scale separation. The cyclotron, rechristened as a “Calutron” in a nod to the University of California, had revolutionized nuclear science.

Recording of the “Rainier” shot, Nevada Test Site, Sept. 19, 1957.
Atomic Energy Commission/U.S. Department of Energy via Wikipedia Commons

While these figures were all played prominent roles in the development of the atomic bomb dropped on Hiroshima and Nagasaki in 1945, it is Oppenheimer who is best remembered. After fourteen years at Berkeley, Oppenheimer was plucked from the physics department at Berkeley by General Leslie Groves to assume leadership of the research program at Los Alamos. Even after his move, Oppenheimer fostered a close alliance between Berkeley and the Manhattan Project. In a shroud of secrecy, the University of California took on the management of the operations at Los Alamos. The university even set up a Los Angeles office that handled material logistics for the lab.

Despite decades passing and the veils of secrecy lifting, the legacy endures. The Los Alamos lab continues to operate under the University of California’s management, preserving Berkeley’s indelible imprint on the atomic age. It’s a testament to the institution’s groundbreaking contributions and a tribute to the remarkable scientists who once walked its hallowed halls.